首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract– This work describes two newly discovered eucrite breccias: three presumably paired meteorites, all named Northwest Africa (NWA) 6105, and NWA 6106. For each meteorite, major‐ and minor‐element compositions of minerals were determined using the electron microprobe. Pyroxene Fe‐Mn co‐variations and bulk‐rock oxygen isotope compositions confirm their classification as eucrites. Variations in mineral compositions and textures are attributed to differences in clast types present (i.e., basaltic or cumulate eucrite). The pyroxene compositions support the hypothesis that samples NWA 6105,1; 6105,2; and 6105,3 are paired polymict eucritic breccias, whereas sample NWA 6106 is a monomict basaltic eucritic breccia. Two‐pyroxene geothermometry yields temperatures too low for igneous crystallization. The variation in temperatures among samples suggests that metamorphism occurred prior to brecciation.  相似文献   

2.
Simple mass‐balance and thermodynamic constraints are used to illustrate the potential geochemical and geophysical diversity of a fully differentiated Vesta‐sized parent body with a eucrite crust (e.g., core size and density, crustal thickness). The results of this analysis are then combined with data from the howardite–eucrite–diogenite (HED) meteorites and the Dawn mission to constrain Vesta's bulk composition. Twelve chondritic compositions are considered, comprising seven carbonaceous, three ordinary, and two enstatite chondrite groups. Our analysis excludes CI and LL compositions as plausible Vesta analogs, as these are predicted to have a negative metal fraction. Second, the MELTS thermodynamic calculator is used to show that the enstatite chondrites, the CV, CK and L‐groups cannot produce Juvinas‐like liquids, and that even for the other groups, depletion in sodium is necessary to produce liquids of appropriate silica content. This conclusion is consistent with the documented volatile‐poor nature of eucrites. Furthermore, carbonaceous chondrites are predicted to have a mantle too rich in olivine to produce typical howardites and to have Fe/Mn ratios generally well in excess of those of the HEDs. On the other hand, an Na‐depleted H‐chondrite bulk composition is capable of producing Juvinas‐like liquids, has a mantle rich enough in pyroxene to produce abundant howardite/diogenite, and has a Fe/Mn ratio compatible with eucrites. In addition, its predicted bulk‐silicate density is within 100 kg m?3 of solutions constrained by data of the Dawn mission. However, oxidation state and oxygen isotopes are not perfectly reproduced and it is deduced that bulk Vesta may contain approximately 25% of a CM‐like component. Values for the bulk‐silicate composition of Vesta and a preliminary phase diagram are proposed.  相似文献   

3.
Comparative planetary geochemistry provides insight into the origin and evolutionary paths of planetary bodies in the inner solar system. The eucrite and angrite achondrite groups are particularly interesting because they show evidence of early planetary differentiation. We present 147Sm‐143Nd and 176Lu‐176Hf analyses of eight noncumulate (basaltic) eucrites, two cumulate eucrites, and three angrites, which together place new constraints on the evolution and differentiation histories of the crusts of the eucrite and angrite parent bodies and their mantle mineralogies. The chemical compositions of both eucrites and angrites indicate similar evolutionary paths and petrogenetic models with formation and isolation of differentiated crustal reservoirs associated with segregation of ilmenite. We report a 147Sm‐143Nd mineral isochron age for the Moama cumulate eucrite of 4519 ± 34 Ma (MSWD = 1.3). This age indicates protracted magmatism within deep crustal layers of the eucrite parent body lasting up to about 50 Ma after the formation of the solar system. We further demonstrate that the isotopic compositions of constituent minerals are compromised by secondary processes hindering precise determination of mineral isochron ages of basaltic eucrites and angrites. We interpret the changes in geochemistry and, consequently, the erroneous 147Sm‐143Nd and 176Lu‐176Hf internal mineral isochron ages of basaltic eucrites and angrites as the result of metamorphic events such as impacts (effects from pressure, temperature, and peak shock duration) on the surfaces of the eucrite and angrite parent bodies.  相似文献   

4.
Abstract— Puerto Lápice is a new eucrite fall (Castilla‐La Mancha, Spain, 10 May 2007). In this paper, we report its detailed petrography, magnetic characterization, mineral and bulk chemistry, oxygen and noble gas isotope systematics, and radionuclide data. Study of four thin sections from two different specimens reveal that the meteorite is brecciated in nature, and it contains basaltic and granulitic clasts, as well as recrystallized impact melt and breccia fragments. Shock veins are ubiquitous and show evidence of at least three different shock events. Bulk chemical analyses suggest that Puerto Lápice belongs to the main group of basaltic eucrites, although it has a significantly higher Cr content. Oxygen isotopes also confirm that the meteorite is a normal member of the HED suite. Noble gas abundances show typical patterns, with dominant cosmogenic and radiogenic contributions, and indicate an average exposure age of 19 ± 2 Ma, and a Pu‐fission Xe age well within typical eucrite values. Cosmogenic radionuclides suggest a preatmospheric size of about 20–30 cm in diameter.  相似文献   

5.
Abstract– Analysis of the mineralogy, isotopic, and bulk compositions of the eucrite meteorites is imperative for understanding their origin on the asteroid 4 Vesta, the proposed parent body of the HED meteorites. We present here the petrology, mineral compositions, and bulk chemistry of several lithic components of the new brecciated basaltic eucrite Northwest Africa (NWA) 3368 to determine if all the lithologies reflect formation from one rock type or many rock types. The meteorite has three main lithologies: coarse‐ and fine‐grained clasts surrounded by a fine‐grained recrystallized silicate matrix. Silicate compositions are homogeneous, and the average rare earth element pattern for NWA 3368 is approximately 10× CI chondrites with a slight negative Eu anomaly. Major and trace element data place NWA 3368 with the Main Group‐Nuevo Laredo trend. High‐Ti chromites with ilmenite exsolution lamellae provide evidence of NWA 3368’s history of intense metamorphism. We suggest that this meteorite underwent several episodes of brecciation and metamorphism, similar to that proposed by Metzler et al. (1995) . We conclude that NWA 3368 is a monomict basaltic eucrite breccia related to known eucrites in texture and in mineral, bulk, and oxygen isotopic composition.  相似文献   

6.
Abstract The 244Pu-fission-136Xe retention ages of howardites, eucrites, and diogenites (HEDs) show that these meteorites have retained Xe since they were formed about 4500 Ma ago. For the Garland diogenite and the Millbillillie eucrite, we obtain fission Xe ages of 4525 ± 40 Ma and 4486 ± 40 Ma, respectively. If Xe isotope data reported by other workers are also considered, we conclude that the monomict equilibrated eucrites Camel Donga, Juvinas, and Millbillillie formed about 40 Ma later than Pasamonte, a polymict unequilibrated eucrite. Stannern, a monomict equilibrated brecciated eucrite, yields a 244Pu-136Xe age of 4442 Ma. The 40K-40Ar retention ages fall, for most HEDs, into the 1000–4000 Ma age range, indicating that 40Ar is generally not well retained. The good retentivity for Xe of HEDs allows us to study primordial trapped Xe in these meteorites. Except for Shalka, in which other authors found Kr and Xe from terrestrial atmospheric contamination only, we present for the first time Kr and Xe isotopic data for diogenites. We studied Ellemeet, Garland, Ibbenbühren, Shalka, and Tatahouine. We show that Tatahouine contains two types of trapped Xe: a terrestrial contamination acquired by an irreversible adsorption process and released at pyrolysis temperatures up to 800 °C, and indigenous primordial Xe released primarily between 800 °C and 1200 °C. The isotopic composition of this primordial Xe is identical to that proposed earlier to be present in primitive achondrites and termed U-Xe or “primitive” Xe, but it has not been directly observed in achondrites until now. This type of primitive Xe is important for understanding the evolution of other Xe reservoirs in the Solar System. Terrestrial atmospheric Xe (corrected for fission Xe and radiogenic Xe from outgassing of the Earth) is related to it by a mass dependent fractionation favoring the heavier Xe isotopes. This primitive Xe is isotopically very similar to solar Xe except for 134Xe and 136Xe. Solar Xe appears to contain an enrichment of unknown origin for these isotopes relative to the primitive Xe.  相似文献   

7.
Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of ?34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H‐isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.  相似文献   

8.
Bunburra Rockhole is a unique basaltic achondrite that has many mineralogical and petrographic characteristics in common with the noncumulate eucrites, but differs in its oxygen isotope composition. Here, we report a study of the mineralogy, petrology, geochemistry, and chronology of Bunburra Rockhole to better understand the petrogenesis of this meteorite and compare it to the eucrites. The geochemistry of bulk samples and of pyroxene, plagioclase, and Ca‐phosphate in Bunburra Rockhole is similar to that of typical noncumulate eucrites. Chronological data for Bunburra Rockhole indicate early formation, followed by slow cooling and perhaps multiple subsequent heating events, which is also similar to some noncumulate eucrites. The 26Al‐26Mg extinct radionuclide chronometer was reset in Bunburra Rockhole after the complete decay of 26Al, but a slight excess in the radiogenic 26Mg in a bulk sample allows the determination of a model 26Al‐26Mg age that suggests formation of the parent melt for this meteorite from its source magma within the first ~3 Ma of the beginning of the solar system. The 207Pb‐206Pb absolute chronometer is also disturbed in Bunburra Rockhole minerals, but a whole‐rock isochron provides a re‐equilibration age of ~4.1 Ga, most likely caused by impact heating. The mineralogy, geochemistry, and chronology of Bunburra Rockhole demonstrate the similarities of this achondrite to the eucrites, and suggest that it formed from a parent melt with a composition similar to that for noncumulate eucrites and subsequently experienced a thermal history and evolution comparable to that of eucritic basalts. This implies the formation of multiple differentiated parent bodies in the early solar system that had nearly identical bulk elemental compositions and petrogenetic histories, but different oxygen isotope compositions inherited from the solar nebula.  相似文献   

9.
We have done petrologic and compositional studies on a suite of polymict eucrites and howardites to better understand regolith processes on their parent asteroid, which we accept is (4) Vesta. Taking into account noble gas results from companion studies, we interpret five howardites to represent breccias assembled from the true regolith: Elephant Moraine (EET) 87513, Grosvenor Mountains (GRO) 95535, GRO 95602, Lewis Cliff (LEW) 85313, and Meteorite Hills (MET) 00423. We suggest that EET 87503 is paired with EET 87513, and thus is also regolithic. Pecora Escarpment (PCA) 02066 is dominated by melt‐matrix clasts, which may have been formed from true regolith by impact melting. These meteorites display a range in eucrite:diogenite mixing ratio from 55:45 to 76:24. There is no correlation between degree of regolith character and Ni content. The Ni contents of howardite, eucrite, and diogenites (HEDs) are mostly controlled by the distribution of coarse chondritic clasts and metal grains, which in some cases resulted from individual, low‐velocity accretion events, rather than extensive regolith gardening. Trace element compositions indicate that the mafic component of HED polymict breccias is mostly basalt similar to main‐group eucrites; Stannern‐trend basaltic debris is less common. Pyroxene compositions show that some trace element‐rich howardites contain abundant debris from evolved basalts, and that cumulate gabbro debris is present in some breccias. The scale of heterogeneity varies considerably; regolithic howardite EET 87513 is more homogeneous than fragmental howardite Queen Alexandra Range (QUE) 97001. Individual samples of a given howardite can have different compositions even at roughly 5 g masses, indicating that obtaining representative meteorite compositions requires multiple or large samples.  相似文献   

10.
Abstract— Eucrite meteorites are igneous rocks that derived from a large asteroid, probably 4 Vesta. Past studies have shown that after most eucrites formed, they underwent metamorphism in temperatures up to ≥800°C. Much later, many were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface but, presumably, escaped later brecciation, while the cumulate eucrites formed at depths where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new 39Ar‐40Ar ages for 9 eucrites classified as basaltic but unbrecciated, 6 eucrites classified as cumulate, and several basaltic‐brecciated eucrites. Precise Ar‐Ar ages of 2 cumulate eucrites (Moama and EET 87520) and 4 unbrecciated eucrites give a tight cluster at 4.48 ± 0.02 Gyr (not including any uncertainties in the flux monitor age). Ar‐Ar ages of 6 additional unbrecciated eucrites are consistent with this age within their relatively larger age uncertainties. By contrast, available literature data on Pb‐Pb isochron ages of 4 cumulate eucrites and 1 unbrecciated eucrite vary over 4.4–4.515 Gyr, and 147Sm‐143Nd isochron ages of 4 cumulate and 3 unbrecciated eucrites vary over 4.41–4.55 Gyr. Similar Ar‐Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as was previously proposed. We suggest that these cumulate and unbrecciated eucrites resided at a depth where parent body temperatures were sufficiently high to cause the K‐Ar and some other chronometers to remain as open diffusion systems. From the strong clustering of Ar‐Ar ages at ?4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event ?4.48 Gyr ago, which quickly cooled the samples and started the K‐Ar chronometer. A large (?460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb‐Pb and Sm‐Nd ages of cumulate and unbrecciated eucrites are consistent with the Ar‐Ar age of 4.48 Gyr, and the few older Pb‐Pb and Sm‐Nd ages may reflect an isotopic closure before the large cratering event. One cumulate eucrite gives an Ar‐Ar age of 4.25 Gyr; 3 additional cumulate eucrites give Ar‐Ar ages of 3.4–3.7 Gyr; and 2 unbrecciated eucrites give Ar‐Ar ages of ?3.55 Gyr. We attribute these younger ages to a later impact heating. Furthermore, the Ar‐Ar impact‐reset ages of several brecciated eucrites and eucritic clasts in howardites fall within the range of 3.5–4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26Al, was strongly impact heated ?3.5 Gyr ago. When these data are combined with eucrite Ar‐Ar ages in the literature, they confirm that several large impact heating events occurred on Vesta between ?4.1–3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the moon, but impact heating appears to have persisted for a somewhat later time on Vesta.  相似文献   

11.
Northwest Africa (NWA) 869 is the largest sample of chondritic regolith breccia, making it an ideal source for research on accretionary processes and primordial chemical mixing. One such process can be seen in detail through the first identification of a eucrite impactor clast in an L chondrite breccia. The ~7 mm diameter clast has oxygen isotope compositions (Δ17O = ?0.240, ?0.258‰) and pigeonite and augite compositions typical for eucrites, but with high areal abundance of silica (9.5%) and ilmenite (1.5%). The rim around the clast is a mixture of breccia and igneous phases, the latter due to either impactor‐triggered melting or later metamorphism. The rim has an oxygen isotope composition falling on a mixing line between known eucrite and L chondrite compositions (Δ17O = 0.326‰) and, coincidentally, on the Mars fractionation line. Pyroxene grains from the melt component in the rim have compositions that fall on a mixing line between the average eucrite pyroxene composition and equilibrated L chondrite composition. The margins of chondritic olivine crystal clasts in the rim are enriched in Fe as a result of diffusion from the Fe‐rich melt and suggest cooling on the scale of hours. The textures and chemical mixing observed provide evidence for an unconsolidated L chondrite target material, differing from the current state of NWA 869 material. The heterogeneity of oxygen isotope and chemical signatures at this small length scale serve as a cautionary note when extrapolating from small volumes of materials to deduce planetesimal source characteristics.  相似文献   

12.
We report the results of a detailed study of the basaltic eucrite Northwest Africa (NWA) 7188, including its mineralogical and bulk geochemical characteristics, oxygen isotopic composition, and 147,146Sm‐143,142Nd mineral isochron ages. The texture and chemical composition of pyroxene and plagioclase demonstrate that NWA 7188 is a monomict eucrite with a metamorphic grade of type 4. The oxygen isotopic composition and the Fe/Mn ratios of pyroxene confirmed that NWA 7188 belongs to the howardite–eucrite–diogenite meteorite suite, generally considered to originate from asteroid 4 Vesta. Whole‐rock TiO2, La, and Hf concentrations and a CI chondrite‐normalized rare earth element pattern are in good agreement with those of representative Stannern‐group eucrites. The 147,146Sm‐143,142Nd isochrons for NWA 7188 yielded ages of 4582 ± 190 and 4554 +17/?19 Ma, respectively. The closure temperature of the Sm‐Nd system for different fractions of NWA 7188 was estimated to be >865 °C, suggesting that the Sm‐Nd decay system has either been resistant to reheating at ~800 °C during the global metamorphism or only partially reset. Therefore, the 146Sm‐142Nd age of NWA 7188 corresponds to the period of initial crystallization of basaltic magmas and/or global metamorphism on the parent body, and is unlikely to reflect Sm‐Nd disturbance by late reheating and impact events. In either case, NWA 7188 is a rare Stannern‐group eucrite that preserves the chronological information regarding the initial crustal evolution of Vesta.  相似文献   

13.
Abstract— We studied the texture, mineralogy, and bulk chemical composition of Dhofar 007, a basaltic achondrite. Dhofar 007 is a polymict breccia that is mostly composed of coarse‐grained granular (CG) clasts with a minor amount of xenolithic components, such as a fragment of Mg‐rich pyroxene. The coarse‐grained, relict gabbroic texture, mineral chemistry, and bulk chemical data of the coarse‐grained clast indicate that the CG clasts were originally a cumulate rock crystallized in a crust of the parent body. However, in contrast to monomict eucrites, the siderophile elements are highly enriched and could have been introduced by impact events. Dhofar 007 appears to have experienced a two‐stage postcrystallization thermal history: rapid cooling at high temperatures and slow cooling at lower temperatures. The presence of pigeonite with closely spaced, fine augite lamellae suggests that this rock was cooled rapidly from higher temperatures (>0.5 °C/yr at ˜1000 °C) than typical cumulate eucrites. However, the presence of the cloudy zone in taenite and the Ni profile across the kamacite‐taenite boundaries indicates that the cooling rate was very slow at lower temperatures (˜1–10 °C/Myr at <600–700 °C). The slow cooling rate is comparable to those in mesosiderites and pallasites. The two‐stage thermal history and the relative abundance of siderophile elements similar to those for metallic portions in mesosiderites suggest that Dhofar 007 is a large inclusion of mesosiderite. However, we cannot rule out a possibility that Dhofar 007 is an anomalous eucrite.  相似文献   

14.
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.  相似文献   

15.
Apatite was analyzed by electron microprobe in 3 cumulate and 10 basaltic eucrites. Eucritic apatite is fluorine‐rich with minor chlorine and hydroxyl (calculated by difference). We confirmed the hydroxyl content by measuring hydroxyl directly in apatites from three representative eucrites using secondary ionization mass spectroscopy. Overall, most eucritic apatites resemble fluorine‐rich lunar mare apatites, but intriguing OH‐ and Cl‐rich apatites suggest a role for water and/or hydrothermal fluids in the Vestan interior or on other related differentiated asteroids. Most late‐stage apatite found in mesostasis has little hydroxyl or chlorine and is thought to have crystallized from a degassed magma; however, several apatites exhibit atypical compositions and/or textural characteristics. For example, the isotopically anomalous basaltic eucrite Pasamonte has apatite in the mesostasis with significant OH. Apatites in Juvinas also have significant OH and occur as veinlets crosscutting silicates. Euhedral apatites in the Moore County cumulate eucrite occur as inclusions in pyroxene and are also hydroxyl‐rich (0.62 wt% OH). The OH was confirmed by SIMS analysis and this apatite clearly points to the presence of water, at least locally, in the Vestan interior. Portions of Elephant Moraine (EET) 90020 have large and abundant apatites, which may be the product of apatite accumulation in a zone of melt‐rock reaction. Relatively chlorine‐rich apatites occur in basaltic eucrite Graves Nunataks (GRA) 98098 (approximately 1 wt% Cl). Particularly striking is the compositional similarity between apatite in GRA 98098 and apatites in lunar KREEP, which may indicate the presence of residual magmas from an asteroid‐wide magma ocean on Vesta.  相似文献   

16.
Dawn has recently revealed that the surface of Vesta is heterogeneously covered by polymictic regoliths represented by mixtures of howardite, eucrite, and diogenite (HED) meteorites. Mixing relations of the HED suite are examined here using a new computational statistical approach of independent component analysis (ICA). We performed eight‐component ICA (Si, Ti, Al, Cr, Fe, Mn, Mg, and Ca) for 209 HED bulk‐rock compositions. The ICA results indicate that the HED bulk‐rock compositions can be reduced into three independent components (IC) and these IC vectors can reasonably explain compositional variation, petrographic observations, and the mixing relations of the HED suite. The IC‐1 vector represents a eucrite variation that extends from cumulate eucrite toward main‐group (MG) and incompatible‐element enriched eucrites. The IC‐2 vector represents a compositional variation of howardites that extends from diogenites to MG‐eucrites, indicating the well‐known two‐component mixing trend of diogenite and eucrite. The IC‐3 vector represents a compositional variation defined by diogenites and olivine‐bearing diogenites, suggesting mixing of olivine and orthopyroxene. Among the three ICs, the diogenite‐eucrite mixing trend IC‐2 is most statistically robust and dominates the compositional variations of the HED suite. Our ICA study further indicates that the combination of only three elements (Mg, Si, and Fe) approximates the eight‐component ICA model, and that the limited number of resolvable γ‐ray spectra obtained by the Dawn mission possibly discriminates olivine lithologies from the olivine‐free regolith breccias on the surface of Vesta.  相似文献   

17.
New petrography, mineral chemistry, and whole rock major, minor, and trace element abundance data are reported for 29 dominantly unbrecciated basaltic (noncumulate) eucrites and one cumulate eucrite. Among unbrecciated samples, several exhibit shock darkening and impact melt veins, with incomplete preservation of primary textures. There is extensive thermal metamorphism of some eucrites, consistent with prior work. A “pristinity filter” of textural information, siderophile element abundances, and Ni/Co ratios of bulk rocks is used to address whether eucrite samples preserve endogenous refractory geochemical signatures of their asteroid parent body (i.e., Vesta), or could have experienced exogenous impact contamination. Based on these criteria, Cumulus Hills 04049, Elephant Moraine 90020, Grosvenor Range 95533, Pecora Escarpment 91245, and possibly Queen Alexander Range 97053 and Northwest Africa 1923 are pristine eucrites. Eucrite major element compositions and refractory incompatible trace element abundances are minimally affected by metamorphism or impact contamination. Eucrite petrogenesis examined through the lens of these elements is consistent with partial melting of a silicate mantle that experienced prior metal–silicate equilibrium, rather than as melts associated with cumulate diogenites. In the absence of the requirement of a large-scale magma ocean to explain eucrite petrogenesis, the interior structure of Vesta could be more heterogeneous than for larger planetary bodies.  相似文献   

18.
A newly found polymict eucrite, EETA79006, is described. Lithic clasts are similar to those found in howardites and fall into four groups: fine-grained (aphanitic), coarse-grained, basaltic, and cataclastic. All have eucritic compositions and differ mainly in cooling and deformation histories. Some basaltic clasts cooled faster than others and may be impact melts. Analysis of pyroxene and feldspar in the matrix and in 20 lithic clasts indicates that the matrix was not derived from the observed lithic clast population. This meteorite and similar polymict eucrites may have formed by addition of younger more fractionated lithic clasts to the regolith of the parent body.  相似文献   

19.
Abstract– We investigate the relationship between the petrology and visible–near infrared spectra of the unbrecciated eucrites and synthetic pyroxene–plagioclase mixtures to determine how spectra obtained by the Dawn mission could distinguish between several models that have been suggested for the petrogenesis of Vesta’s crust (e.g., partial melting and magma ocean). Here, we study the spectra of petrologically characterized unbrecciated eucrites to establish spectral observables, which can be used to yield mineral abundances and compositions consistent with petrologic observations. No information about plagioclase could be extracted from the eucrite spectra. In contrast, pyroxene dominates the spectra of the eucrites and absorption band modeling provides a good estimate of the relative proportions of low‐ and high‐Ca pyroxene present. Cr is a compatible element in eucrite pyroxene and is enriched in samples from primitive melts. An absorption at 0.6 μm resulting from Cr3+ in the pyroxene structure can be used to distinguish these primitive eucrites. The spectral differences present among the eucrites may allow Dawn to distinguish between the two main competing models proposed for the petrogenesis of Vesta (magma ocean and partial melting). These models predict different crustal structures and scales of heterogeneity, which can be observed spectrally. The formation of eucrite Allan Hills (ALH) A81001, which is primitive (Cr‐rich) and relatively unmetamorphosed, is hard to explain in the magma ocean model. It could only have been formed as a quench crust. If the magma ocean model is correct, then ALHA81001‐like material should be abundant on the surface of Vesta and the Vestoids.  相似文献   

20.
We investigated several olivine-bearing, medium-grained, ophitic to subophitic eucritic clasts from three different Antarctic howardites. Based on grain size (0.5–2 mm), these clasts could represent intrusive igneous units. Based on mineral composition (pyroxene and plagioclase), they are similar to basaltic eucrites. Elemental concentrations of the major silicates and bulk mg#, however, range from those known for basaltic eucrites to those found in cumulate eucrites. Recognizable cumulus phases are absent. Conservatively speaking, the clasts examined may simply classify as relatively coarse-grained unequilibrated basaltic eucrites. Alternatively, at least one of the clasts showing intermediate grain size and a relatively primitive chemical composition (mg# 50) may sample a rock type that could be genetically placed between the basaltic and cumulate eucrite lines of origin. A minor, yet genetically meaningful common feature of the clasts studied is the occurrence of fayalitic olivine. Two distinct categories exist. They are (1) fine veinlets exclusively percolating through pyroxene and (2) more substantial (up to 100 μm wide) veins and/or interstitial deposits. Only the fine veinlets also contain variable amounts of anorthite, ilmenite, and troilite. Although both types of olivine are ferroan, textural aspects suggest distinct paths of generation. The fine veinlets are best explained by decomposition of relatively FeO-rich, heterogeneous, and locally metastable pyroxene, caused in situ by impact heating and subsequent fast cooling. The wider, often very ragged-looking monomineralic olivine fillings, on the other hand, may represent the iron-enriched portion of a highly fractionated magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号