首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

2.
Abstract— We demonstrate that the use of an established spectral deconvolution algorithm with mid‐infrared spectral libraries of mineral separates of varying grain sizes is capable of identifying the known mineral compositions and abundances of a selection of howardite, eucrite, and diogenite (HED) meteorite samples. In addition, we apply the same technique to mid‐infrared spectral emissivity measurements of Vesta that have been obtained from Cornell's Mid‐Infrared Asteroid Spectroscopy (MIDAS) Survey and the Infrared Space Observatory (ISO). Each Vesta measurement was made over a different range of longitudes. Our spectral deconvolution results to the Vesta spectra corroborate that Vesta's surface is howardite or eucrite‐like in composition and heterogeneous across its surface. The spectral fits produced by the linear deconvolution algorithm yields good results for the HED samples of known composition, thus giving us a high degree of confidence that our results for Vesta are valid.  相似文献   

3.
Records of space weathering are important for understanding the formation and evolution of surface regolith on airless celestial bodies. Current understanding of space weathering processes on asteroids including asteroid‐4 Vesta, the source of the howardite–eucrite–diogenite (HED) meteorites, lags behind what is known for the Moon. In this study, we studied agglutinates, a vesicular glass‐coating lithic clast, and a fine‐grained sulfide replacement texture in the polymict breccia Northwest Africa (NWA) 1109 with electron microscopy. In agglutinates, nanophase grains of FeNi and FeS were observed, whereas npFe0 was absent. We suggested that the agglutinates in NWA 1109 formed from fine‐grained surface materials of Vesta during meteorite/micrometeorite bombardment. The fine‐grained sulfide replacement texture (troilite + hedenbergite + silica) should be a result of reaction between S‐rich vapors and pyroxferroite. The unique Fe/Mn values of relict pyroxferroite indicate a different source from normal HED pyroxenes, arguing that the reaction took place on or near the surface of Vesta. The fine‐grained sulfide replacement texture could be a product of nontypical space weathering on airless celestial bodies. We should pay attention to this texture in future returned samples by asteroid exploration missions.  相似文献   

4.
Abstract— Asteroid 4 Vesta, believed to be the parent body of the howardite, eucrite, and diogenite (HED) meteorites, will be investigated by the Dawn orbiting spacecraft. Dawn carries a gamma ray and neutron detector (GRaND) that will measure and map some major‐ and trace‐element abundances. Drawing on HED geochemistry, we propose a mixing model that uses element ratios appropriate for the interpretation of GRaND data. Because the spatial resolution of GRaND is relatively coarse, the analyzed chemical compositions on the surface of Vesta will likely reflect mixing of three endmember components: diogenite, cumulate eucrite, and basaltic eucrite. Reliability of the mixing model is statistically investigated based on published whole‐rock data for HED meteorites. We demonstrate that the mixing model can accurately estimate the abundances of all the GRaND‐analyzed major elements, as well as of minor elements (Na, Cr, and Mn) not analyzed by this instrument. We also show how a similar mixing model can determine the modal abundance of olivine, and we compare estimated and normative olivine data for olivine‐bearing diogenites. By linking the compositions of well‐analyzed HED meteorites with elemental mapping data from GRaND, this study may help constrain the geological context for HED meteorites and provide new insight into the magmatic evolution of Vesta.  相似文献   

5.
Lunar breccias preserve the records of geologic processes on the Moon. In this study, we report the occurrence, petrography, mineralogy, and geologic significance of the observed secondary olivine veinlets in lunar feldspathic breccia meteorite Northwest Africa (NWA) 11273. Bulk‐rock composition measurements show that this meteorite is geochemically similar to other lunar highland meteorites. In NWA 11273, five clasts are observed to host veinlets that are dominated by interconnecting olivine mineral grains. The host clasts are mainly composed of mafic minerals (i.e., pyroxene and olivine) and probably sourced from a basaltic lithology. The studied olivine veinlets (~5 to 30 μm in width) are distributed within the mafic mineral host, but do not extend into the adjacent plagioclase. Chemically, these olivine veinlets are Fe‐richer (Fo41.4–51.9), compared with other olivine grains (Fo54.3–83.1) in lithic clasts and matrix of NWA 11273. By analogy with the secondary olivine veinlets observed in meteorites from asteroid Vesta (howardite–eucrite–diogenite group samples) and lunar mare samples, our study suggests that the newly observed olivine veinlets in NWA 11273 are likely formed by secondary deposition from a lunar fluid, rather than by crystallization from a high‐temperature silicate melt. Such fluid could be sulfur‐ and phosphorous‐poor and likely had an endogenic origin on the Moon. The new occurrence of secondary olivine veinlets in breccia NWA 11273 reveals that the fluid mobility and deposition could be a previously underappreciated geological process on the Moon.  相似文献   

6.
Abstract– The Dawn spacecraft carries a gamma‐ray and neutron detector (GRaND), which will measure and map the abundances of selected elements on the surface of asteroid 4 Vesta. We compare the variability of moderately volatile/refractory incompatible element ratios (K/Th and K/Ti) in howardite, eucrite, and diogenite (HED) meteorites with those in other achondrite suites that represent asteroidal crusts, because these ratios may be accurately measured by GRaND and likely reflect initial chemical compositions of the HED parent body. The K/Th and K/Ti variations can differentiate HED meteorites from angrites and some unique eucrite‐like lithologies. The results suggest that K, Th, and Ti abundances determined from GRaND data could not only confirm that Vesta is the parent body of HED meteorites but might also allow recognition of as‐yet unsampled compositional terranes on Vesta. Besides the K‐Th‐Ti systematics study, we propose a new three‐component mixing model for interpretation of GRaND spectra, required because the spatial resolution of GRaND is coarser than the spectral (compositional) heterogeneity of Vesta’s surface. The mixing model uses abundances of K, Ti, Fe, and Mg that will be analyzed more accurately than other prospective GRaND‐analyzed elements. We examine propagated errors due to GRaND analytical uncertainties and intrinsic errors that stem from an assumption introduced into the mixing model. The error investigation suggests that the mixing model can adequately estimate not only the diogenite/eucrite mixing ratio but also the abundances of most major and minor elements within the GRaND propagated errors.  相似文献   

7.
Abstract— Magmatic iron meteorites are generally agreed to represent metal that crystallized in asteroidal cores from a large pool of liquid. Estimates suggest that the metallic liquid contained significant amounts of S and P, both of which are incompatible and exert a strong effect on trace element partitioning. In tandem, S and P are also prone to cause immiscibility between sulfide liquid and P-rich metal liquid. The liquid immiscibility field occupies ~70% of the portion of the Fe-Ni-S-P system in which Fe is the first phase to crystallize. In spite of this, previous fractional crystallization models have taken into account only one liquid phase and have encountered significant discrepancies between the meteorite data and model values for the key elements Ni, Ir, Ga, Ge and Au at even moderate degrees of fractionation. For the first time, a model for trace element partitioning between immiscible liquids in the Fe-Ni-S-P system is presented in order to assess the effects on fractionation in magmatic iron meteorite groups. The onset of liquid immiscibility causes a significant change in the enrichment patterns of S and P in both liquids; so elements with contrasting partitioning behavior will show trends deviating clearly from one-liquid trends. A trend recorded in the solid metal will either be a smooth curve as long as equilibrium is maintained between the two liquids or the trend may diverge into a field limited by two extreme curves depending on the degree of disequilibrium. Bulk initial liquids for most magmatic groups have S/P (wt%) ratios well below 25. In these cases and due to the constitution of the Fe-Ni-S-P system, most of the metal will crystallize from the rapidly decreasing volume of metal liquid and only a subordinate amount from the sulfide liquid. Because of the strong extraction of P into the metal liquid, P will have a much larger influence on trace element partitioning than a low initial P content might suggest. My model calculations suggest that liquid immiscibility played a significant role during the solidification of the IIIAB parent body's core. The two-liquid model reproduces the IIIAB trends more closely than previous one-liquid models and can account for: (a) the general widening of the IIIAB trend with increasing Ni and decreasing Ir contents, (b) the occurrence of high-Ni members that are not strongly depleted in Ir, Ga and Ge; and (c) an upper limit at ~11 wt% Ni where the metal liquid was almost consumed.  相似文献   

8.
Abstract— The grain-size distribution of the regolith of asteroid 4 Vesta has been estimated by comparing its reflectance spectra (0.3–2.6 μm) with those of HED meteorites. The finest grain-size separate (<25 μm) of a particular howardite has a reflectance spectrum most similar to Vesta's. In order to better simulate Vesta's surface mineralogy, reflectance spectra of those finest HED meteorite powders were linearly combined, and Vesta's spectrum was scaled for the best fit between them. Both the albedo and the shape of reflectance spectrum of Vesta were well reproduced by regional mixtures of the finest (<25 μm) powders of HED meteorites. The result suggests the heterogeneity of Vesta's surface and provides an estimate of the visible reflectance of Vesta that is close to its IRAS albedo. Thus, this suggests that fine grains can be generated and retained by relatively small bodies (Vesta is approximately 500 km in diameter).  相似文献   

9.
Abstract– Northwest Africa (NWA) 4797 is an ultramafic Martian meteorite composed of olivine (40.3 vol%), pigeonite (22.2%), augite (11.9%), plagioclase (9.1%), vesicles (1.6%), and a shock vein (10.3%). Minor phases include chromite (3.4%), merrillite (0.8%), and magmatic inclusions (0.4%). Olivine and pyroxene compositions range from Fo66–72,En58–74Fs19–28Wo6–15, and En46–60Fs14–22Wo34–40, respectively. The rock is texturally similar to “lherzolitic” shergottites. The oxygen fugacity was QFM?2.9 near the liquidus, increasing to QFM?1.7 as crystallization proceeded. Shock effects in olivine and pyroxene include strong mosaicism, grain boundary melting, local recrystallization, and pervasive fracturing. Shock heating has completely melted and vesiculated igneous plagioclase, which upon cooling has quench‐crystallized plagioclase microlites in glass. A mm‐size shock melt vein transects the rock, containing phosphoran olivine (Fo69–79), pyroxene (En44–51Fs14–18Wo30–42), and chromite in a groundmass of alkali‐rich glass containing iron sulfide spheres. Trace element analysis reveals that (1) REE in plagioclase and the shock melt vein mimics the whole rock pattern; and (2) the reconstructed NWA 4797 whole rock is slightly enriched in LREE relative to other intermediate ultramafic shergottites, attributable to local mobilization of melt by shock. The shock melt vein represents bulk melting of NWA 4797 injected during pressure release. Calculated oxygen fugacity for NWA 4797 indicates that oxygen fugacity is decoupled from incompatible element concentrations. This is attributed to subsolidus re‐equilibration. We propose an alternative nomenclature for “lherzolitic” shergottites that removes genetic connotations. NWA 4797 is classified as an ultramafic poikilitic shergottite with intermediate trace element characteristics.  相似文献   

10.
Abstract– We document the petrographic setting and textures of Fe,Ni metal, the mineralogy of metallic assemblages, and the modal mineral abundances in the EL3 meteorites Asuka (A‐) 881314, A‐882067, Allan Hills 85119, Elephant Moraine (EET) 90299/EET 90992, LaPaz Icefield 03930, MacAlpine Hills (MAC) 02635, MAC 02837/MAC 02839, MAC 88136, Northwest Africa (NWA) 3132, Pecora Escarpment 91020, Queen Alexandra Range (QUE) 93351/QUE 94321, QUE 94594, and higher petrologic type ELs Dar al Gani 1031 (EL4), Sayh al Uhaymir 188 (EL4), MAC 02747 (EL4), QUE 94368 (EL4), and NWA 1222 (EL5). Large metal assemblages (often containing schreibersite and graphite) only occur outside chondrules and are usually intergrown with silicate minerals (euhedral to subhedral enstatite, silica, and feldspar). Sulfides (troilite, daubréelite, and keilite) are also sometimes intergrown with silicates. Numerous authors have shown that metal in enstatite chondrites that are interpreted to have been impact melted contains euhedral crystals of enstatite. We argue that the metal/sulfide–silicate intergrowths in the ELs we studied were also formed during impact melting and that metal in EL3s thus does not retain primitive (i.e., nebular) textures. Likewise, the EL4s are also impact‐melt breccias. Modal abundances of metal in the EL3s and EL4s range from approximately 7 to 30 wt%. These abundances overlap or exceed those of EL6s, and this is consistent either with pre‐existing heterogeneity in the parent body or with redistribution of metal during impact processes.  相似文献   

11.
Abstract— The 40Ar‐39Ar dating technique has been applied to the lunar meteorites Northwest Africa 032 (NWA 032), an unbrecciated mare basalt, and Northwest Africa 773 (NWA 773), (composed of cumulate and breccia lithologies), to determine the crystallization age and timing of shock events these meteorites may have experienced. Stepped heating analyses of several different samples of NWA 032 gave complex age spectra but indistinguishable total ages with a mean of 2.779 ± 0.014 Gyr. Possible causes of the complex age spectra obtained from NWA 032 include recoil of 39Ar, or the presence of pre‐shock 40Ar incorporated into shock‐melt veins. The effects of shock veins were investigated by laser fusion of 20 small samples expected to contain varying proportions of the shock veins. The laser ages show a narrow age distribution between 2.61–2.86 Gyr and a mean of 2.73 ± 0.03 Gyr, identical to the total age of ?2.80 Gyr obtained for the bulk sample. Diffusion calculations based on the stepped heating data indicate that Ar release can be reconciled by release from feldspar (and possibly shock veins) at low temperatures followed by pyroxene at higher temperatures. The exposure age of NWA 032 is 212 ± 11 Myr, and it contains low trapped solar Ar. Stepped heating of cumulate and breccia portions of NWA 773 also give a relatively young age of 2.91 Gyr. The presence of trapped Ar in the breccia makes the age determination of this component less precise, but release of Ar appears to be from the same mineral phase, assumed to be plagioclase, in both lithologies. A marked difference in exposure age between the 2 lithologies also exists, with the breccia having spent 81 Myr longer at the lunar surface; this finding is consistent with the higher trapped Ar content of this lithology. Assuming that 2.80 Gyr and 2.91 Gyr are the crystallization ages of NWA 032 and NWA 773 respectively, these two meteorites are the youngest lunar mare basalts available for study.  相似文献   

12.
Abstract— Isotopic ages of meteorites that indicate chronometer resetting due to impact heating are summarized. Most of the ages were obtained by the 39Ar-40Ar technique, but several Rb-Sr, Pb-Pb, and Sm-Nd ages also suggest some degree of impact resetting. Considerations of experimental data on element diffusion in silicates suggest that various isotopic chronometers ought to differ in their ease of resetting during shock heating in the order K-Ar (easiest), Rb-Sr, Pb-Pb, and Sm-Nd, which is approximately the order observed in meteorites. Partial rather than total chronometer resetting by impacts appears to be the norm; consequently, interpretation of the event age is not always straightforward. Essentially all 39Ar-40Ar ages of eucrites and howardites indicate partial to total resetting in the relatively narrow time interval of 3.4–4.1 Ga ago (1 Ga = 109 years). Several disturbed Rb-Sr ages appear consistent with this age distribution. This grouping of ages and the brecciated nature of many eucrites and all howardites argues for a large-scale impact bombardment of the HED parent body during the same time period that the Moon received its cataclysmic bombardment. Other meteorite parent bodies such as those of mesosiderites, some chondrites, and IIE irons also may have experienced this bombardment. These data suggest that the early bombardment was not lunar specific but involved much of the inner Solar System, and may have been caused by breakup of a larger planetismal. Although a few chondrites show evidence of age resetting ~3.5–3.9 Ga ago, most impact ages of chondrites tend to fall below 1.3 Ga in age. A minimum of ~4 impact events, including events at 0.3, 0.5, 1.2, and possibly 0.9 Ga appear to be required to explain the younger ages of H, L, and LL chondrites, although additional events are possible. Most L chondrites show evidence of shock, and the majority of 39Ar-40Ar ages of L chondrites fall near 0.5 Ga. The L chondrite parent body apparently experienced a major impact at this time, which may have disrupted it. The observations (1) that lunar highland rocks experienced major impact resetting of various isotopic chronometers ~3.7–4.1 Ga ago; (2) that the HED parent body experienced widespread impact resetting of the K-Ar chronometer but only modest disturbance of other isotopic systems, during a similar time period; (3) that ordinary chondrite parent bodies show much more recent and less extensive impact resetting; and (4) that impacts, which initiated cosmic-ray exposure of most stone meteorites almost never reset isotopic chronometers, may all be a consequence of relative parent body size. Greater degrees of isotopic chronometer resetting occur in larger and warmer impact ejecta deposits that cool slowly. The relatively greater size of bodies like the Moon and Vesta (assumed to be the parent asteroid of HED meteorites) both permit such favorable ejecta deposits to occur more easily compared to smaller parent bodies (generally assumed for chondrites) and also protect parent objects from collisional disruption. Thus, impacts on larger bodies would tend to more easily reset chronometers, consistent with the observed relative ease of resetting of Moon (easiest), HED, chondrites and of K-Ar (easiest), Rb-Sr, other chronometers. In contrast, the more recent impact ages of chondrites are postulated to represent collisional disruption of smaller parent objects whose fragments are more readily removed from the meteorite source reservoirs. Impacts that initiate cosmic-ray exposure are mostly small in scale and produce little heating.  相似文献   

13.
Abstract— This forensic work aims to authenticate the recovery location of Castenaso, a 120 g ordinary chondritic (L5) meteorite reportedly found in 2003 along the sandy bank of the Idice Stream, near the village of Castenaso (Bologna, Emilia‐Romagna, Italy). Using the hypothesis that Castenaso was instead a hot‐desert meteorite, we conducted a comparative mineralogical and geochemical study of major weathering effects on European and Saharan ordinary chondrites as potential markers of the environment where Castenaso resided during its terrestrial lifetime. Inductively coupled plasma‐mass spectrometry (ICP‐MS) data reveals that Castenaso is significantly enriched in Sr, Ba, Tl, and U, and suggests geochemical alteration in a hot‐desert environment. The alteration is minor: Castenaso is not coated by desert varnish and does not show significant light rare earth element (LREE) enrichment or loss of Ni and Co. The apparent contrast in size, morphology, and composition between the soil particles filling the external fractures of Castenaso and those from the bank of the Idice Stream observed under the scanning electron microscope (SEM) suggests that Castenaso did not reside at the reported find location. Abraded quartz grains (up to 1 mm in size) in Castenaso are undoubtedly from a hot‐desert eolian environment: they are well‐rounded and show external surfaces characterized by the presence of dish‐shaped concavities and upturned silica plates that have been subject to solution‐precipitation and subsequent smoothing. We therefore conclude that Castenaso is one of the many hot‐desert ordinary chondrite finds, probably from the Sahara, that is currently available on the market. This forensic work provides the scientific grounds for changing the name of this meteorite.  相似文献   

14.
Abstract— The petrographic relationships in diogenites between orthopyroxene and minor phases such as chromite, troilite, diopside, plagioclase, and silica are often obscured by the intense brecciation that characterizes these meteorites. Although brecciated, Bilanga preserves numerous clasts displaying primary textural relations between orthopyroxene and these minor phases that are large enough to analyze by electron microprobe. In this study, we focus on the distribution, composition, and origin of the minor phases in Bilanga to provide new insights into the crystallization and metamorphic history of these rocks. The samples examined consist mainly of orthopyroxene grains plus five types of assemblages containing diopside + a Fe‐rich phase (chromite, troilite, and/or Fe‐Ni metal) ± plagioclase ± silica. We interpret type 1 assemblages as being remnants of intercumulus melt trapped in the interstices between orthopyroxene grains after crystal settling in a magma chamber. Type 2 assemblages appear to have formed by heterogeneous exsolution during thermal metamorphism. Type 3 assemblages are believed to be remnants of other assemblages that have been shocked, melted, and rapidly recrystallized by impact events. Type 4 assemblages consist of veins that also appear to have formed from trapped intercumulus melt. Regions of silica‐rich mesostasis (type 5) appear to be larger patches of more evolved intercumulus melt that have been significantly affected by late‐stage impact melting. Finally, large clasts containing plagioclase ± diopside are interpreted to be exotic fragments of a different but possibly related rock type incorporated in the Bilanga breccia.  相似文献   

15.
Abstract— The petrography and mineral and bulk chemistries of silicate inclusions in Sombrerete, an ungrouped iron that is one of the most phosphate‐rich meteorites known, was studied using optical, scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and secondary ion mass spectrometry (SIMS) techniques. Inclusions contain variable proportions of alkalic siliceous glass (?69 vol% of inclusions on average), aluminous orthopyroxene (?9%, Wo1–4Fs25–35, up to ?3 wt% Al), plagioclase (?8%, mainly An70–92), Cl‐apatite (?7%), chromite (?4%), yagiite (?1%), phosphate‐rich segregations (?1%), ilmenite, and merrillite. Ytterbium and Sm anomalies are sometimes present in various phases (positive anomalies for phosphates, negative for glass and orthopyroxene), which possibly reflect phosphate‐melt‐gas partitioning under transient, reducing conditions at high temperatures. Phosphate‐rich segregations and different alkalic glasses (K‐rich and Na‐rich) formed by two types of liquid immiscibility. Yagiite, a K‐Mg silicate previously found in the Colomera (IIE) iron, appears to have formed as a late‐stage crystallization product, possibly aided by Na‐K liquid unmixing. Trace‐element phase compositions reflect fractional crystallization of a single liquid composition that originated by low‐degree (?4–8%) equilibrium partial melting of a chondritic precursor. Compositional differences between inclusions appear to have originated as a result of a “filter‐press differentiation” process, in which liquidus crystals of Cl‐apatite and orthopyroxene were less able than silicate melt to flow through the metallic host between inclusions. This process enabled a phosphoran basaltic andesite precursor liquid to differentiate within the metallic host, yielding a dacite composition for some inclusions. Solidification was relatively rapid, but not so fast as to prevent flow and immiscibility phenomena. Sombrerete originated near a cooling surface in the parent body during rapid, probably impact‐induced, mixing of metallic and silicate liquids. We suggest that Sombrerete formed when a planetesimal undergoing endogenic differentiation was collisionally disrupted, possibly in a breakup and reassembly event. Simultaneous endogenic heating and impact processes may have widely affected silicate‐bearing irons and other solar system matter.  相似文献   

16.
The gamma‐ray activities of 33 meteorite samples (30 ordinary chondrites, 1 Mars meteorite, 1 iron, 1 howardite) collected during Omani‐Swiss meteorite search campaigns 2001–2008 were nondestructively measured using an ultralow background gamma‐ray detector. The results provide several types of information: Potassium and thorium concentrations were found to range within typical values for the meteorite types. Similar mean 26Al activities in groups of ordinary chondrites with (1) weathering degrees W0‐1 and low 14C terrestrial age and (2) weathering degree W3‐4 and high 14C terrestrial age are mostly consistent with activities observed in recent falls. The older group shows no significant depletion in 26Al. Among the least weathered samples, one meteorite (SaU 424) was found to contain detectable 22Na identifying it as a recent fall close to the year 2000. Based on an estimate of the surface area searched, the corresponding fall rate is ~120 events/106 km2*a, consistent with other estimations. Twelve samples from the large JaH 091 strewn field (total mass ~4.5 t) show significant variations of 26Al activities, including the highest values measured, consistent with a meteoroid radius of ~115 cm. Activities of 238U daughter elements demonstrate terrestrial contamination with 226Ra and possible loss of 222Rn. Recent contamination with small amounts of 137Cs is ubiquitous. We conclude that gamma‐ray spectroscopy of a selection of meteorites with low degrees of weathering is particularly useful to detect recent falls among meteorites collected in hot deserts.  相似文献   

17.
We reexamine the relationship between pyroxene composition and near‐infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two‐part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene‐bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene‐bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene‐bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low‐Ca pyroxene‐bearing materials, and (4) feldspathic materials.  相似文献   

18.
We report on the isotopic, chemical, and structural properties of four O‐rich presolar grains identified in situ in the Adelaide ungrouped C2, LaPaZ Icefield (LAP) 031117 CO3.0, and Dominion Range (DOM) 08006 CO3.0 chondrites. All four grains have oxygen‐isotopic compositions consistent with origins in the circumstellar envelopes (CSE) of low‐mass O‐rich stars evolved along the red‐giant and asymptotic‐giant branch (RGB, AGB, respectively) of stellar evolution. Transmission electron microscope (TEM) analyses, enabled by focused‐ion‐beam scanning electron microscope extraction, show that the grain from Adelaide is a single‐crystal Mg‐Al spinel, and comparison with equilibrium thermodynamic predictions constrains its condensation to 1500 K assuming a total pressure ≤10?3 atm in its host CSE. In comparison, TEM analysis of two grains identified in the LAP 031117 chondrite exhibits different microstructures. Grain LAP‐81 is composed of olivine containing a Ca‐rich and a Ca‐poor domain, both of which show distinct orientations, suggesting changing thermodynamic conditions in the host CSE that cannot be precisely constrained. LAP‐104 contains a polycrystalline assemblage of ferromagnesian silicates similar to previous reports of nanocrystalline presolar Fe‐rich silicates that formed under nonequilibrium conditions. Lastly, TEM shows that the grain extracted from DOM 08006 is a polycrystalline assemblage of Cr‐bearing spinel. The grains occur in different orientations, likely reflecting mechanical assembly in their host CSE. The O‐isotopic and Cr‐rich compositions appear to point toward nonequilibrium condensation. The spinel is surrounded by an isotopically solar pyroxene lacking long‐range atomic order and could have served as a nucleation site for its condensation in the interstellar medium or the inner solar protoplanetary disk.  相似文献   

19.
Abstract— We studied 26 IAB iron meteorites containing silicate‐bearing inclusions to better constrain the many diverse hypotheses for the formation of this complex group. These meteorites contain inclusions that fall broadly into five types: (1) sulfide‐rich, composed primarily of troilite and containing abundant embedded silicates; (2) nonchondritic, silicate‐rich, comprised of basaltic, troctolitic, and peridotitic mineralogies; (3) angular, chondritic silicate‐rich, the most common type, with approximately chondritic mineralogy and most closely resembling the winonaites in composition and texture; (4) rounded, often graphite‐rich assemblages that sometimes contain silicates; and (5) phosphate‐bearing inclusions with phosphates generally found in contact with the metallic host. Similarities in mineralogy and mineral and O‐isotopic compositions suggest that IAB iron and winonaite meteorites are from the same parent body. We propose a hypothesis for the origin of IAB iron meteorites that combines some aspects of previous formation models for these meteorites. We suggest that the precursor parent body was chondritic, although unlike any known chondrite group. Metamorphism, partial melting, and incomplete differentiation (i.e., incomplete separation of melt from residue) produced metallic, sulfide‐rich and silicate partial melts (portions of which may have crystallized prior to the mixing event), as well as metamorphosed chondritic materials and residues. Catastrophic impact breakup and reassembly of the debris while near the peak temperature mixed materials from various depths into the re‐accreted parent body. Thus, molten metal from depth was mixed with near‐surface silicate rock, resulting in the formation of silicate‐rich IAB iron and winonaite meteorites. Results of smoothed particle hydrodynamic model calculations support the feasibility of such a mixing mechanism. Not all of the metal melt bodies were mixed with silicate materials during this impact and reaccretion event, and these are now represented by silicate‐free IAB iron meteorites. Ages of silicate inclusions and winonaites of 4.40‐4.54 Ga indicate this entire process occurred early in solar system history.  相似文献   

20.
Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using 57Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10–20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5–10 μm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features. The main focus of the study was the transitional region between kamacite and plessite, known as the “cloudy zone.” Results confirm the presence of tetrataenite and antitaenite in the cloudy zone as its only components. However, both phases were also found in plessite, indicating that antitaenite is not restricted exclusively to the cloudy zone, as previously thought. The confirmation of paramagnetic antitaenite as the matrix phase of the cloudy zone contrasts with recent observations of a ferromagnetic matrix phase using X‐ray photoemission electron spectroscopy. Possible explanations for the different results seen using these techniques are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号