首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report on the microscopic impactor debris around Kamil crater (45 m in diameter, Egypt) collected during our 2010 geophysical expedition. The hypervelocity impact of Gebel Kamil (Ni‐rich ataxite) on a sandstone target produced a downrange ejecta curtain of microscopic impactor debris due SE–SW of the crater (extending ~300,000 m2, up to ~400 m from the crater), in agreement with previous determination of the impactor trajectory. The microscopic impactor debris include vesicular masses, spherules, and coatings of dark impact melt glass which is a mixture of impactor and target materials (Si‐, Fe‐, and Al‐rich glass), plus Fe‐Ni oxide spherules and mini shrapnel, documenting that these products can be found in craters as small as few tens of meters in diameter. The estimated mass of the microscopic impactor debris (<290 kg) derived from Ni concentrations in the soil is a small fraction of the total impactor mass (~10 t) in the form of macroscopic shrapnel. That Kamil crater was generated by a relatively small impactor is consistent with literature estimates of its pre‐atmospheric mass (>20 t, likely 50–60 t).  相似文献   

2.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   

3.
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness.  相似文献   

4.
Abstract— On Earth, oceanic impacts are twice as likely to occur as continental impacts, yet the effect of the oceans has not been previously considered when estimating the terrestrial crater size‐frequency distribution. Despite recent progress in understanding the qualitative and quantitative effect of a water layer on the impact process through novel laboratory experiments, detailed numerical modeling, and interpretation of geological and geophysical data, no definitive relationship between impactor properties, water depth, and final crater diameter exists. In this paper, we determine the relationship between final (and transient) crater diameter and the ratio of water depth to impactor diameter using the results of numerical impact models. This relationship applies for normal incidence impacts of stoney asteroids into water‐covered, crystalline oceanic crust at a velocity of 15 km s?1. We use these relationships to construct the first estimates of terrestrial crater size‐frequency distributions (over the last 100 million years) that take into account the depth‐area distribution of oceans on Earth. We find that the oceans reduce the number of craters smaller than 1 km in diameter by about two‐thirds, the number of craters ?30 km in diameter by about one‐third, and that for craters larger than ?100 km in diameter, the oceans have little effect. Above a diameter of ?12 km, more craters occur on the ocean floor than on land; below this diameter more craters form on land than in the oceans. We also estimate that there have been in the region of 150 impact events in the last 100 million years that formed an impact‐related resurge feature, or disturbance on the seafloor, instead of a crater.  相似文献   

5.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

6.
The location, size, and principal characteristics of the currently known proven and probable terrestrial impact structures are tabulated. Of the 78 known probable structures, only 3 are Precambrian and the majority are <300 my in age. A survey of the variation in preservation with size and age indicates that, unless protected by sedimentary cover, a structure <20 km in diameter has a recognizable life of <600 my. The depth-diameter relationships of terrestrial structures are similar to lunar craters; however, it is believed that terrestrial craters were always shallower than their lunar counterparts. Complex structures formed in sedimentary targets are shallower than those in crystalline targets, and the transition from simple to complex crater morphology occurs in sedimentary strata at approximately one-half the diameter of the morphology transition in crystalline rocks. This is a reflection of target strength. Although observations indicate that crater size, target strength, and surface gravity are variables in the formation of complex craters, they do not permit an unequivocal choice between collapse and rebound processes for the formation of complex structures. It may be that both processes act together in the modification of crater morphology during the later stages of excavation. The major emphasis of recent shock metamorphic studies has been toward the development of models of cratering processes. An important contribution has been the identification, through meteoritic contamination in the melt rocks, of the type of bolide at a number of probable impact structures. This has served to strengthen the link between the occurrence of shock metamorphic effects and their origin by hypervelocity meteorite impact.  相似文献   

7.
Abstract— The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best‐preserved “wet‐target” craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile‐rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ?85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the “inverted sombrero” morphology observed at some craters in layered targets. The distribution of crater‐fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre‐resurge fallback deposits, is found in the central crater. Impact‐modified sediments, formed by fluidization and collapse of water‐saturated sand and silt‐clay, occur in the annular trough. Allogenic sediment‐clast breccia, interpreted as ocean‐resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat‐floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar‐sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles.  相似文献   

8.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

9.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

10.
The interstellar collector on NASA's Stardust mission captured many particles from sources other than the interstellar dust stream. Impact trajectory may provide a means of discriminating between these different sources, and thus identifying/eliminating candidate interstellar particles. The collector's aerogel preserved a clear record of particle impact trajectory from the inclination and direction of the resultant tracks. However, the collector also contained aluminum foils and, although impact crater studies to date suggest only the most inclined impacts (>45° from normal) produce crater morphologies that indicate trajectory (i.e., distinctly elliptical), these studies have been restricted to much larger (mm and above) scales than are relevant for Stardust (μm). It is unknown how oblique impact crater morphology varies as a function of length scale, and therefore how well Stardust craters preserve details of impactor trajectory. Here, we present data from a series of impact experiments, together with complementary hydrocode modeling, that examine how crater morphology changes with impact angles for different‐sized projectiles. We find that, for our smallest spherical projectiles (2 μm diameter), the ellipticity and rim morphology provide evidence of their inclined trajectory from as little as 15° from normal incidence. This is most likely a result of strain rate hardening in the target metal. Further experiments and models find that variation in velocity and impactor shape complicate these trends, but that rim morphology remains useful in determining impact direction (where the angle of impact is >20° from normal) and may help identify candidate interstellar particle craters on the Stardust collector.  相似文献   

11.
Pangboche crater (17.2°N, 226.7°E; 10.4 km dia.) lies close to the summit of Olympus Mons volcano, Mars, at an elevation of ~20.9 km above the datum. Given a scale height of 11.1 km for the atmosphere, this relatively large fresh crater most likely formed at an atmospheric pressure <1 mbar in essentially volatile‐free young lava flows. Detailed analysis of Pangboche crater from High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images reveals that volatile‐related features (e.g., fluidized ejecta layers and pitted floor material) are absent. In contrast, abundant impact melt occurs on the floor, inner walls, and rim of the crater, and there is an extensive field of secondary craters that extend up to approximately 45 km from the rim crest. All of these attributes argue that it was the absence of volatiles in the target rocks at the time of crater formation, rather than the thin atmosphere, which had a controlling influence on crater morphology. Digital elevation data derived from the CTX images reveal that Pangboche crater has a depth of about 954 m (depth/diameter = approximately 0.092) and that uplifted target rocks comprise about 58% of the relief of the 180 m‐high north rim. As the target material comprised a sequence of layered lava flows, Pangboche crater may well represent the best crater on Mars for direct comparison with craters formed on the Moon (permitting variations in gravitational effects to be investigated) or on Mercury (allowing the role of the atmosphere to be studied).  相似文献   

12.
Abstract– The majority of meteorite impacts occur at oblique incidence angles. However, many of the effects of obliquity on impact crater size and morphology are poorly understood. Laboratory experiments and numerical models have shown that crater size decreases with impact angle, the along‐range crater profile becomes asymmetric at low incidence angles, and below a certain threshold angle the crater planform becomes elliptical. Experimental results at approximately constant impact velocity suggest that the elliptical threshold angle depends on target material properties. Herein, we test the hypothesis that the threshold for oblique crater asymmetry depends on target material strength. Three‐dimensional numerical modeling offers a unique opportunity to study the individual effects of both impact angle and target strength; however, a systematic study of these two parameters has not previously been performed. In this work, the three‐dimensional shock physics code iSALE‐3D is validated against laboratory experiments of impacts into a strong, ductile target material. Digital elevation models of craters formed in laboratory experiments were created from stereo pairs of scanning electron microscope images, allowing the size and morphology to be directly compared with the iSALE‐3D craters. The simulated craters show excellent agreement with both the crater size and morphology of the laboratory experiments. iSALE‐3D is also used to investigate the effect of target strength on oblique incidence impact cratering. We find that the elliptical threshold angle decreases with decreasing target strength, and hence with increasing cratering efficiency. Our simulations of impacts on ductile targets also support the prediction from Chapman and McKinnon (1986) that cratering efficiency depends on only the vertical component of the velocity vector.  相似文献   

13.
Abstract– We present a case modeling study of impact crater formation in H2O‐bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O‐ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30–50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater‐wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water‐related features, both morphologic and spectroscopic, that high‐resolution images of Mars are now detecting within many Martian craters.  相似文献   

14.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   

15.
This paper presents the results of an experimental study on the geometric parameters of craters that originated at the impact interaction of polyethylene projectiles with a massive organic-glass target. The impactor speed ranged from 2.7 to 6.28 km/s. The shapes of the resulting craters are determined. Using statistical analysis and scaling theory, we obtained the dependence of the diameter and depth of the crater on defining parameters. The critical impact energy resulting in the catastrophic breakup of the target is estimated.  相似文献   

16.
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8–5.3 km s?1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3–30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi‐infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well‐consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s?1) is effectively semi‐infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7–15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well‐consolidated basalt, no crater forms in the exposed subsurface layer.  相似文献   

17.
Linné is a simple crater, with a diameter of 2.23 km and a depth of 0.52 km, located in northwestern Mare Serenitatis. Recent high‐resolution data acquired by the Lunar Reconnaissance Orbiter Camera revealed that the shape of this impact structure is best described by an inverted truncated‐cone. We perform morphometric measurements, including slope and profile curvature, on the Digital Terrain Model of Linné, finding the possible presence of three subtle topographic steps, at the elevation of +20, ?100, and ?200 m relative to the target surface. The kink at ?100 m might be related to the interface between two different rheological layers. Using the iSALE shock physics code, we numerically model the formation of Linné crater to derive hints on the possible impact conditions and target physical properties. In the initial setup, we adopt a basaltic projectile impacting the Moon with a speed of 18 km s?1. For the local surface, we consider either one or two layers, in order to test the influence of material properties or composite rheologies on the final crater morphology. The one‐layer model shows that the largest variations in the crater shape take place when either the cohesion or the friction coefficient is varied. In particular, a cohesion of 10 kPa marks the threshold between conical‐ and parabolic‐shaped craters. The two‐layer model shows that the interface between the two layers would be exposed at the observed depth of 100 m when an intermediate value (~200 m) for the upper fractured layer is set. We have also found that the truncated‐cone morphology of Linné might originate from an incomplete collapse of the crater wall, as the breccia lens remains clustered along the crater walls, while the high‐albedo deposit on the crater floor can be interpreted as a very shallow lens of fallout breccia. The modeling analysis allows us to derive important clues on the impactor size (under the assumption of a vertical impact and collision velocity equal to the mean value), and on the approximate, large‐scale preimpact target properties. Observations suggest that these large‐scale material properties likely include some important smaller scale variations, disclosed as subtle morphological steps in the crater walls. Furthermore, the modeling results allow advancing some hypotheses on the geological evolution of the Mare Serenitatis region where Linné crater is located (unit S14). We suggest that unit S14 has a thickness of at least a few hundreds of meters up to about 400 m.  相似文献   

18.
Abstract— Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine‐target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within “contacts 1 and 2,” cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long‐lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller “contact 2” with a duration of 100,000 yr and the low present crater formation rate, only ?1–2 detectable marine‐target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger “contact 1‐Meridiani,” with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine‐target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine‐target craters. The implications regarding the discovery of marine‐target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions.  相似文献   

19.
Abstract— We present the first hydrocode simulations of the formation of the Sierra Madera structure (west Texas, USA), which was caused by an impact into a thick sedimentary target sequence. We modeled Sierra Madera using the iSALE hydrocode, and here we present two best‐fit models: 1) a crater with a rim (final crater) diameter of ?12 km, in agreement with previous authors' interpretations of the original structure, and 2) a crater ?16 km in diameter with increased postimpact erosion. Both models fit some of the geologic observational data, but discrepancies with estimates of peak shock pressure, extent of deformation, and stratigraphic displacement remain. This study suggests that Sierra Madera may be a larger crater than previously reported and illustrates some of the challenges in simulating impact deformation of sedimentary lithologies. As many terrestrial craters possess some amount of sedimentary rocks in the target sequence, numerical models of impacts into sedimentary targets are essential to our understanding of target rock deformation and the mechanics of crater formation.  相似文献   

20.
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s?1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号