首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

2.
Abstract— Cosmic‐ray exposure (CRE) ages and Mars ejection times were calculated from the radionuclide 81Kr and stable Kr isotopes for seven martian meteorites. The following 81Kr‐Kr CRE ages were obtained: Los Angeles = 3.35 ± 0.70 Ma; Queen Alexandra Range 94201 = 2.22 ± 0.35 Ma; Shergotty = 3.05 ± 0.50 Ma; Zagami = 2.98 ± 0.30 Ma; Nakhla = 10.8 ± 0.8 Ma; Chassigny = 10.6 ± 2.0 Ma; and Allan Hills 84001 = 15.4 ± 5.0 Ma. Comparison of these ages with previously obtained CRE ages from the stable noble gas nuclei 3He, 21Ne, and 38Ar shows excellent agreement. This indicates that the method for the production rate calculation for the stable nuclei is reliable. In all martian meteorites we observe effects induced by secondary cosmic‐ray produced epithermal neutrons. Epithermal neutron fluxes, φn (30–300 eV), are calculated based on the reaction 79Br(n, γβ)80Kr. We show that the neutron capture effects were induced in free space during Mars‐Earth transfer of the meteoroids and that they are not due to a pre‐exposure on Mars before ejection of the meteoritic material. Neutron fluxes and slowing down densities experienced by the meteoroids are calculated and pre‐atmospheric sizes are estimated. We obtain minimum radii in the range of 22–25 cm and minimum masses of 150–220 kg. These results are in good agreement with the mean sizes reported for model calculations using current semiempirical data.  相似文献   

3.
Abstract— We determined the mineralogical and chemical characteristics and the He, Ne, and Ar isotopic abundances of 2 meteorites that fell in China and of 2 meteorites that were recovered by the 15th Chinese Antarctic Research Expedition. Guangmingshan (H5), Zhuanghe (H5), and Grove Mountain (GRV) 98002 (L5) yield cosmic ray exposure (CRE) ages of 68.7 ± 10.0 Ma, 3.8 ± 0.6 Ma, and 17.0 ± 2.5 Ma, respectively. These ages are within the range typically observed for the respective meteorite types. GRV 98004 (H5) had an extremely short parent body‐Earth transfer time of 0.052 ± 0.008 Ma. Its petrography and mineral chemistry are indistinguishable from other typical H5 chondrites. Only 3 other meteorites exist with similarly low CRE ages: Farmington (L5), Galim (LL6), and ALH 82100 (CM2). We show that several asteroids in Earth‐crossing orbits, or in the main asteroid belt with orbits close to an ejection resonance, are spectrally matching candidates and may represent immediate precursor bodies of meteorites with CRE ages ≤0.1 Ma.  相似文献   

4.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

5.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   

6.
Abstract— Most 40Ar‐39Ar ages of L chondrites record an event at approximately 500 Ma, indicating a large collisional impact at that time. However, there is a spread in ages from 400 to 600 Ma in these meteorites that is greater than the analytical uncertainty. Identification of, and correction for, trapped Ar in a few L chondrites has given an age of 470 ± 6 Ma. This age coincides with Ordivician fossil meteorites that fell to Earth at 467 ± 2 Ma. As these fossil meteorites were originally L chondrites, the apparent conclusion is that a large impact sent a flood of L chondrite material to Earth, while material that remained on the L chondrite parent body was strongly heated and reset. We have reduced 40Ar‐39Ar data for Northwest Africa 091 using various techniques that appear in the literature, including identification and subtraction of trapped Ar. These techniques give a range of ages from 455 to 520 Ma, and show the importance of making accurate corrections. By using the most straightforward technique to identify and remove a trapped Ar component (which is neither terrestrial nor primordial), an 40Ar‐39Ar age of 475 ± 6 Ma is found for Northwest Africa 091, showing a temporal link to fossil meteorites. In addition, high temperature releases of Northwest Africa 091 contain evidence for a second trapped component, and subtraction of this component indicates a possible second collisional impact at approximately 800 Ma. This earlier age coincides with 40Ar‐39Ar ages of some H and L chondrites, and lunar samples.  相似文献   

7.
Abstract— We performed high‐resolution 40Ar‐39Ar dating of mineral separates and whole‐rock samples from the desert meteorites Dhofar 300, Dhofar 007, and Northwest Africa (NWA) 011. The chronological information of all samples is dominated by plagioclase of varying grain size. The last total reset age of the eucrites Dhofar 300 and Dhofar 007 is 3.9 ± 0.1 Ga, coeval with the intense cratering period on the Moon. Some large plagioclase grains of Dhofar 007 possibly inherited Ar from a 4.5 Ga event characteristic for other cumulate eucrites. Due to disturbances of the age spectrum of NWA 011, only an estimate of 3.2–3.9 Ga can be given for its last total reset age. Secondary events causing partial 40Ar loss ≤3.4 Ga ago are indicated by all age spectra. Furthermore, Ar extractions from distinct low temperature phases define apparent isochrons for all samples. These isochron ages are chronologically irrelevant and most probably caused by desert alterations, in which radiogenic 40Ar and K from the meteorite and occasionally K induced by weathering are mixed, accompanied by incorporation of atmospheric Ar. Additional uptake of atmospheric Ar by the alteration phase(s) was observed during mineral separation (i.e., crushing and cleaning in ultrasonic baths). Consistent cosmic‐ray exposure ages were obtained from plagioclase and pyroxene exposure age spectra of Dhofar 300 (25 ± 1 Ma) and Dhofar 007 (13 ± 1 Ma) using the mineral's specific target element chemistry and corresponding 38Ar production rates.  相似文献   

8.
Results of nondestructive gamma‐ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Ko?ice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic‐ray particles in the space affecting radionuclides with different half‐lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre‐atmospheric radius of the meteoroid was 50 ± 5 cm. In two Ko?ice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble‐gas cosmic‐ray exposure age of the Ko?ice meteorite is 5–7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Ko?ice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long‐term average flux of galactic cosmic rays of 4.8 particles cm?2 s?1, whereas the short‐lived radionuclide activities are more consistent with a flux of 7.0 protons cm?2 s?1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.  相似文献   

9.
Abstract— Chemical and mineral analysis of the Bhawad chondrite, which fell in Rajasthan in 2002, suggest that this stone belongs to LL6 group of chondrites. Based on helium, neon, and argon isotopes, it has a cosmic ray exposure age of 16.3 Ma. The track density in the olivines shows a narrow range of 1.7–6.8 times 106/cm2. The 22Na/26Al ratio of 1.13 is about 25% lower than the solar cycle average value of about 1.5, but is consistent with irradiation of the meteoroid to modulated galactic cosmic ray fluxes as expected for a fall around the solar maximum. The cosmogenic records indicate a pre‐atmospheric radius of about 7.5 cm. Based on U/Th‐4He and K‐40Ar, the gas retention ages are low (about 1.1 Ga), indicating a major thermal event or shock event that lead to the complete loss of radiogenic 4He and 40Ar and the partial loss of radiogenic 129Xe and fission Xe from 244Pu.  相似文献   

10.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

11.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

12.
It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.  相似文献   

13.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

14.
Abstract— 40Ar‐39Ar data are presented for the unbrecciated lunar basaltic meteorites Asuka (A‐) 881757, Yamato (Y‐) 793169, Miller Range (MIL) 05035, LaPaz Icefield (LAP) 02205, Northwest Africa (NWA) 479 (paired with NWA 032), and basaltic fragmental breccia Elephant Moraine (EET) 96008. Stepped heating 40Ar‐39Ar analyses of several bulk fragments of related meteorites A‐881757, Y‐793169 and MIL 05035 give crystallization ages of 3.763 ± 0.046 Ga, 3.811 ± 0.098 Ga and 3.845 ± 0.014 Ga, which are comparable with previous age determinations by Sm‐Nd, U‐Pb Th‐Pb, Pb‐Pb, and Rb‐Sr methods. These three meteorites differ in the degree of secondary 40Ar loss with Y‐793169 showing relatively high Ar loss probably during an impact event ?200 Ma ago, lower Ar loss in MIL 05035 and no loss in A‐881757. Bulk and impact melt glass‐bearing samples of LAP 02205 gave similar ages (2.985 ± 0.016 Ga and 2.874 ± 0.056 Ga) and are consistent with ages previously determined using other isotope pairs. The basaltic portion of EET 96008 gives an age of 2.650 ± 0.086 Ga which is considered to be the crystallization age of the basalt in this meteorite. The Ar release for fragmental basaltic breccia EET 96008 shows evidence of an impact event at 631 ± 20 Ma. The crystallization age of 2.721 ± 0.040 Ga determined for NWA 479 is indistinguishable from the weighted mean age obtained from three samples of NWA 032 supporting the proposal that these meteorites are paired. The similarity of 40Ar‐39Ar ages with ages determined by other isotopic systems for multiple meteorites suggests that the K‐Ar isotopic system is robust for meteorites that have experienced a significant shock event and not a prolonged heating regime.  相似文献   

15.
Abstract– We report measurements of cosmogenic nuclides in up to 11 bulk samples from various depths in Norton County. The activities of 36Cl, 41Ca, 26Al, and 10Be were measured by accelerator mass spectrometry; the concentrations of the stable isotopes of He, Ne, Ar, and Sm were measured by electron and thermal ionization mass spectrometry, respectively. Production rates for the nuclides were modeled using the LAHET and the Monte Carlo N‐Particle codes. Assuming a one‐stage irradiation of a meteoroid with a pre‐atmospheric radius of approximately 50 cm, the model satisfactorily reproduces the depth profiles of 10Be, 26Al, and 53Mn (<6%) but overestimates the 41Ca concentrations by about 20%. 3He, 21Ne, and 26Al data give a one‐stage cosmic‐ray exposure (CRE) age of 115 Ma. Argon‐36 released at intermediate temperatures, 36Arn, is attributed to production by thermal neutrons. From the values of 36Arn, an assumed average Cl concentration of 4 ppm, and a CRE age of 115 Ma, we estimate thermal neutron fluences of 1–4 × 1016 neutrons cm?2. We infer comparable values from ε149Sm and ε150Sm. Values calculated from 41Ca and a CRE age of 115 Ma, 0.2–1.4 × 1016 neutrons cm?2, are lower by a factor of approximately 2.5, indicating that nearly half of the 149Sm captures occurred earlier. One possible irradiation history places the center of proto‐Norton County at a depth of 88 cm in a large body for 140 Ma prior to its liberation as a meteoroid with a radius of 50 cm and further CRE for 100 Ma.  相似文献   

16.
Abstract— We performed a comprehensive study of the noble gas isotopic abundances, radionuclide activities, and mineralogical and chemical composition of two mesosiderites and two iron meteorites. For the mesosiderites Dong Ujimqin Qi and Weiyuan, the silicate and the metal phases were studied. The anomalous ataxite Rafrüti is not chemically related to any other meteorite class, whereas Ningbo is a type IVA octahedrite. The mineralogy and major and trace element abundances of the silicate phases of Dong Ujimqin Qi and Weiyuan are similar to those of other mesosiderites and distinct from those of the howardites. The cosmic‐ray exposure history was studied based on the concentrations of the cosmogenic noble gas nuclei and radionuclide activities. For the iron meteorites, cosmic‐ray exposure ages were calculated from the pairs 10Be‐21Ne, 26Al‐21Ne, and 36Cl‐36Ar. Rafrüti yields the youngest exposure age of all ataxites (6.8 ± 1.7 Ma), whereas that of Ningbo with 107 ± 15 Ma falls within the range observed for the other octahedrites. The parent body break‐up times of the mesosiderites Dong Ujimqin Qi and Weiyuan are 252 ± 50 and 25.9 ± 5.0 Ma, respectively. We find no evidence for a common break‐up event for the mesosiderites and the howardites.  相似文献   

17.
Dhofar 280 recorded a complex history on the Moon revealed by high‐resolution 40Ar‐39Ar dating. Thermal resetting occurred less than 1 Ga ago, and the rock was exposed to several impact events before and afterwards. The cosmic ray exposure (CRE) age spectrum indicates a 400 ± 40 Ma CRE on the lunar surface. A unique feature of this lunar sample is a partial loss of cosmogenic 38Ar, resulting in a (low‐temperature) CRE age plateau of about 1 Ma. This was likely caused by the same recent impact event that reset the (low‐temperature) 40Ar‐39Ar age spectrum and preceded the short transit phase to Earth of ≤1 Ma. Dhofar 280 may be derived from KREEP‐rich lunar frontside terrains, possibly associated with the Copernicus crater or with a recent impact event on the deposits of the South Pole–Aitken basin. Although Dhofar 280 is paired with Dhofar 081, their irradiation and thermal histories on the Moon were different. An important trapped Ar component in Dhofar 280 is “orphan” Ar with a low 40Ar/36Ar ratio. It is apparently a mixture of two components, one endmember with 40Ar/36Ar = 17.5 ± 0.2 and a second less well‐constrained endmember with 40Ar/36Ar ≤10. The presence of two endmembers of trapped Ar, their compositions, and the breccia ages seem to be incompatible with a previously suggested correlation between age or antiquity and the (40Ar/36Ar)trapped ratio (Eugster et al. 2001; Joy et al. 2011a). Alternatively, “orphan” Ar of this impact melt breccia may have an impact origin.  相似文献   

18.
The Almahata Sitta strewn field is dominated by ureilites, but contains a large fraction of chondritic fragments of various types. We analyzed stable isotopes of He, Ne, Ar, Kr, and Xe, and the cosmogenic radionuclides 10Be, 26Al, and 36Cl in six chondritic Almahata Sitta fragments (EL6 breccia, EL6, EL3‐5, CB, LL4/5, R‐like). The cosmic‐ray exposure (CRE) ages of five of the six samples have an average of 19.2 ± 3.3 Ma, close to the average of 19.5 ± 2.5 Ma for four ureilites. The cosmogenic radionuclide concentrations in the chondrites indicate a preatmospheric size consistent with Almahata Sitta. This corroborates that Almahata Sitta chondrite samples were part of the same asteroid as the ureilites. However, MS‐179 has a lower CRE age of 11.0 ± 1.4 Ma. Further analysis of short‐lived radionuclides in fragment MS‐179 showed that it fell around the same time, and from an object of similar size as Almahata Sitta, making it almost certain that MS‐179 is an Almahata Sitta fragment. Instead, its low CRE age could be due to gas loss, chemical heterogeneity that may have led to an erroneous 21Ne production‐rate, or, perhaps most likely, MS‐179 could represent the true 4π exposure age of Almahata Sitta (or an upper limit thereof), while all other samples analyzed so far experienced exposure on the parent body of similar lengths. Finally, MS‐179 had an extraordinarily high activity of neutron‐capture 36Cl, ~600 dpm kg?1, the highest activity observed in any meteorite to date, related to a high abundance of the Cl‐bearing mineral lawrencite.  相似文献   

19.
Abstract— To contribute to the understanding of the impact history of asteroids, we performed a high-resolution 40Ar-39Ar study of ten moderately to highly shocked chondrites, which we selected according to the shock classification given by Stöffler et al. (1991). Two recent shocked chondrite falls and two highly shocked eucrites completed our sample suite. When possible, we separated impact melt from host rock for separate analysis. In total, we studied 28 samples from 14 meteorites. In some cases, atmospheric Ar that we associate with terrestrial weathering was identified and corrected for. The ages we obtained range between ~100 Ma and ~4.1 Ga and are clearly distinct from primordial ages that correspond to solar system formation. We reproduced the previously reported cluster of L-chondrite ages, ~500 Ma. The most prominent result of our study is that, in the case of chondrites, melts generally are older than host rocks or melt-embedded unmolten rocks. To solve this apparent paradox, we propose that the melt-forming event, which was the most severe shock episode in the history of these meteorites, has not been the only occasion affecting their K-Ar systems. At least one later impact metamorphism must have occured. The response of the K-Ar clock to this second event was more severe in the host rock than in the previously (in the first event) generated melt veins and pockets because of different Ar retention rates. Hence, impact metamorphism on meteorite parent bodies indeed was a multistage process extending in time over billions of years.  相似文献   

20.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号