首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To establish the chemical group provenance of the five thermally altered carbonaceous chondrites Asuka (A‐) 881551, Asuka‐882113, Elephant Moraine (EET) 96026, Mulga (west), and Northwest Africa (NWA) 3133, we quantified 44 trace elements in each of them. We also analyzed Larkman Nunatak (LAR) 04318 (CK4), Miller Range (MIL) 090001 (CR2), Roberts Massif (RBT) 03522 (CK5) as reference samples as their chemical group affinity is already recognized. We conclude that Asuka‐881551, Asuka‐882113, and Mulga (west) are thermally metamorphosed CK chondrites. Compositionally, Elephant Moraine 96026 most resembles the CV chondrites. NWA 3133 is the most significantly thermally altered carbonaceous chondrite in our suite of samples. It is completely recrystallized (no chondrules or matrix remain), but its bulk composition is consistent with a CV–CK clan provenance. The thermally labile element (e.g., Se, Te, Zn, and Bi) depletion in NWA 3133 indicates a chemically open system during the heating episode. It remains unclear if the heat necessary for its thermal alteration of NWA 3133 was due to the decay of 26Al or was impact related. Finally, we infer that MIL 090001, Mulga (west), and NWA 3133 show occasional compositional signatures indicative of terrestrial alteration. The alteration is especially evident within the elements Sr, Ba, La, Ce, Th, U, and possibly Sb. Despite the alteration, we can still confidently place each of the altered chondrites within an established chemical group or clan.  相似文献   

2.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   

3.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

4.
Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondrites but are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal‐rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment (PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675 (CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time‐of‐flight mass spectrometry and fluorescence, and gas chromatography isotope ratio mass spectrometry. The δ13C/12C ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (13–16 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.2–2 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of β‐, γ‐, and δ‐amino acids compared to the corresponding α‐amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.  相似文献   

5.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

6.
The Antarctic carbonaceous chondrites DOM 08004 and DOM 08006 have been paired and classified as CO3.0s. There is some uncertainty as to whether they should be paired and whether they are best classified as CO chondrites, but they provide an opportunity for the study of refractory inclusions that have not been modified by parent body processes. In this work, refractory inclusions in thin sections of DOM 08004 and 08006 are studied and compared with inclusions in ALHA77307 (CO3.0) and Acfer 094 (C3.0, ungrouped). Results show that the DOM samples have refractory inclusion populations that are similar to each other but not typical of CO3 chondrites; main differences are that the DOM samples are slightly richer in inclusions in general and, more specifically, in the proportions of grossite‐bearing inclusions. In DOM 08004 and DOM 08006, 12.4% and 6.6%, respectively, of the inclusions are grossite‐bearing. This is higher than the proportion found in Acfer 094 (5.2%), whereas none were found in ALHA77307. Like those in Acfer 094, DOM inclusions are small (mostly <100 μm across) and fine‐grained, and thin rims of aluminous diopside±melilite are very common. Also like Acfer 094, most phases in the DOM inclusions have FeO contents higher than expected for primary refractory phases. In addition to typical inclusions, some unusual ones were found in DOM 08004, including a perovskite‐rich one with a rare, recently reported Sc‐, Al‐oxide and davisite; a very grossite‐rich inclusion with a small, hibonite‐rich core enclosed in a grossite mantle; and a relict, grossite‐rich inclusion enclosed in an Al‐rich chondrule. The CAI populations in the DOM samples are similar to each other and, based on grossite abundances, FeO enrichments and occurrences of rims are more Acfer 094‐like than CO3‐like. An earlier history on an FeO‐rich parent was previously favored over nebular equilibria or in situ reactions to account for FeO enrichments in CAIs in the otherwise pristine chondrite Acfer 094, and a similar history is indicated for the DOM CAIs. Acfer 094, DOM 08004 and 08006 might best be classified as a new subgroup of CO3 chondrites.  相似文献   

7.
Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon‐rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3–6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh‐performance liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino‐terminal (n‐ω‐amino) acids β‐alanine, and γ‐amino‐n‐butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n‐ω‐amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer–Tropsch‐type reactions, although this hypothesis needs further testing.  相似文献   

8.
Abstract– We used instrumental neutron activation analysis and petrography to determine bulk and phase compositions and textural characteristics of 15 carbonaceous chondrites of uncertain classification: Acfer 094 (type 3.0, ungrouped CM‐related); Belgica‐7904 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Wisconsin Range (WIS) 91600, Dhofar 225, and Yamato‐86720); Dar al Gani (DaG) 055 and its paired specimen DaG 056 (anomalous, reduced CV3‐like); DaG 978 (type 3 ungrouped); Dominion Range 03238 (anomalous, magnetite‐rich CO3.1); Elephant Moraine 90043 (anomalous, magnetite‐bearing CO3); Graves Nunataks 98025 (type 2 or type 3 ungrouped); Grosvenor Mountains (GRO) 95566 (anomalous CM2 with a low degree of aqueous alteration); Hammadah al Hamra (HaH) 073 (type 4 ungrouped, possibly related to the Coolidge‐Loongana [C‐L] 001 grouplet); Lewis Cliff (LEW) 85311 (anomalous CM2 with a low degree of aqueous alteration); Northwest Africa 1152 (anomalous CV3); Pecora Escarpment (PCA) 91008 (anomalous, metamorphosed CM); Queen Alexandra Range 99038 (type 2 ungrouped); Sahara 00182 (type 3 ungrouped, possibly related to HaH 073 and/or to C‐L 001); and WIS 91600 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Belgica‐7904, Dhofar 225, and Y‐86720). Many of these meteorites show fractionated abundance patterns, especially among the volatile elements. Impact volatilization and dehydration as well as elemental transport caused by terrestrial weathering are probably responsible for most of these compositional anomalies. The metamorphosed CM chondrites comprise two distinct clusters on the basis of their Δ17O values: approximately ?4‰ for PCA 91008, GRO 95566, DaG 978, and LEW 85311, and approximately 0‰ for Belgica‐7904 and WIS 91600. These six meteorites must have been derived from different asteroidal regions.  相似文献   

9.
Meteoritical Bulletin 107 contains 2714 meteorites including 16 falls (Aba Panu, Ablaketka, Andila, Gueltat Zemmour, Hamburg, Karimati, Mahbas Arraid, Mangui, Mazichuan, Mukundpura, Ozerki, Parauapebas, Renchen, San Pedro de Urabá, Sokoto, Tintigny), with 2226 ordinary chondrites, 168 HED achondrites, 132 carbonaceous chondrites (including 41 CM, 34 CV, 26 CO, 21 CK, 4 CR, 5 ungrouped), 43 ureilites, 30 iron meteorites (including 2 ungrouped), 29 lunar meteorites, 22 Martian meteorites, 16 primitive achondrites (including 3 brachinites), 12 Rumuruti chondrites, 9 enstatite chondrites, 7 ungrouped achondrites, 6 pallasites, 5 mesosiderites, 3 enstatite achondrites, 3 ungrouped chondrites, and 2 angrites. 1569 meteorites are from Antarctica, 835 from Africa, 206 from South America, 62 from Asia, 21 from North America, 11 from unknown locations, 8 from Europe (including one from Russia), and 1 from Oceania.  相似文献   

10.
Our detailed mineralogical, elemental, and isotopic study of the Miller Range (MIL) 07687 meteorite showed that, although this meteorite has affinities to CO chondrites, it also exhibits sufficient differences to warrant classification as an ungrouped carbonaceous chondrite. The most notable feature of MIL 07687 is the presence of two distinct matrix lithologies that result from highly localized aqueous alteration. One of these lithologies is Fe‐rich and exhibits evidence for interaction with water, including the presence of fibrous (dendritic) ferrihydrite. The other lithology, which is Fe‐poor, appears to represent relatively unaltered protolith material. MIL 07687 has presolar grain abundances consistent with those observed in other modestly altered carbonaceous chondrites: the overall abundance of O‐rich presolar grains is 137 ± 3 ppm and the overall abundance of SiC grains is 71 ± 11 ppm. However, there is a large difference in the observed O‐rich and SiC grain number densities between altered and unaltered areas, reflecting partial destruction of presolar grains (both O‐ and C‐rich grains) due to the aqueous alteration experienced by MIL 07687 under highly oxidizing conditions. Detailed coordinated NanoSIMS‐TEM analysis of a large hotspot composed of an isotopically normal core surrounded by a rim composed of 17O‐rich grains is consistent with either original condensation of the core and surrounding grains in the same parent AGB star, or with grain accretion in the ISM or solar nebula.  相似文献   

11.
Tibooburra, a new meteorite find from western New South Wales, belongs to the Vigarano subgroup of the carbonaceous chondrites and, on the basis of its opaque mineralogy, appears to be oxidised. Petrological evidence suggests that, like the Allende meteorite, Tibooburra is a CV3 chondrite which has experienced greater metamorphic effects than other CV3 meteorites. Tibooburra has a bulk composition intermediate between the CO and less altered CV chondrites. This transitional nature is exhibited by several elements and is convincingly displayed by the multivariate techniques of cluster analysis and principal component analysis. Tibooburra thus resembles several other CV chondrites, such as Coolidge and Karoonda, which have been strongly metamorphosed. This group of meteorites is believed to have accreted early in the history of the Vigarano parent body and, as a result, contain greater quantities of high temperature Ca-Al-rich inclusions but less low temperature matrix and volatile phases than other CV chondrites. Furthermore, in these meteorites both the matrix and magnesium silicate phases appear to be more iron rich than those in later accreted meteorites. Subsequently, these deeper seated meteorites have undergone more pronounced thermal metamorphism than those located in shallower portions of the parent body.  相似文献   

12.
Abstract— Calcium- and aluminum-rich inclusions (CAIs), chondrules, dark inclusions and matrices in certain CV3 carbonaceous chondrites appear to have been modified by different degrees of late-stage alteration processes that caused significant variations in mineralogy and chemistry. Some chondrules and CAIs are rimmed with fayalitic olivine. Metal in all components may be oxidized and sulphidized to magnetite, Ni-rich metal and sulfides. Silicates in all components are aqueously altered to different degrees to phyllosilicates. Primary minerals in some CAIs experienced Fe-alkali-halogen metasomatism forming nepheline, sodalite, wollastonite, hedenbergite and other secondary minerals. In CV3 chondrites with metasomatized CAIs, nepheline, sodalite, etc. are also present in chondrule mesostases and in matrices. McSween's (1977b) reduced subgroup of CV3 chondrites generally shows minimal alteration of all components and may represent the unaltered precursors for the oxidized CV3 chondrites, which generally show major alteration. Most studies have been focused on specific components in CV3 chondrites and have not considered possible relationships between alteration processes. We infer from the correlated occurrences of the alteration features that they were closely related in time and space and review nebular and asteroidal models for their origins. We prefer an asteroidal model.  相似文献   

13.
Abstract— Batch culture experiments were performed to investigate the weathering of meteoritic material by iron‐oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron‐oxidizers growing under pH‐neutral conditions oxidized iron from iron meteorites. These results show that rapid biologically‐mediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.  相似文献   

14.
Abstract– Petrological and geochemical analyses of Miller Range (MIL) 03346 indicate that this meteorite originated from the same augitic cumulate layer(s) as the nakhlite Martian meteorites, but underwent rapid cooling prior to complete crystallization. As with the other nakhlites, MIL 03346 contains a secondary alteration assemblage, in this case consisting of iddingsite‐like alteration veins in olivine phenocrysts, Fe‐oxide alteration veins associated with the mesostasis, and Ca‐ and K,Fe‐sulfate veins. We compared the textural and mineralogical compositions of MIL 090030, 090032, and 090136 with MIL 03346, focusing on the composition and Raman spectra of the alteration assemblages. These observations indicate that the meteorites are paired, and that the preterrestrial olivine‐bound alteration assemblages were produced by weakly acidic brine. Although these alteration assemblages resemble similar assemblages in Nakhla, the absence of siderite and halite in the Miller Range nakhlites indicates that the parental alteration brine was comparatively HCO3? depleted, and less concentrated, than that which altered Nakhla. This indicates that the Miller Range nakhlite alteration brine experienced a separate evolutionary pathway to that which altered Nakhla, and therefore represents a separate branch of the Lafayette‐Nakhla evaporation sequence. Thin‐sections cut from the internal portions of these meteorites (away from any fusion crust or terrestrially exposed edge), contain little Ca‐sulfate (identified as gypsum), and no jarosite, whereas thin‐sections with terrestrially exposed edges have much higher sulfate abundances. These observations suggest that at least the majority of sulfate within the Miller Range nakhlites is terrestrially derived.  相似文献   

15.
Density,porosity, and magnetic susceptibility of carbonaceous chondrites   总被引:1,自引:0,他引:1  
Abstract– We report physical properties (bulk and grain density, magnetic susceptibility, and porosity) measured using nondestructive and noncontaminating methods for 195 stones from 63 carbonaceous chondrites. Grain densities over the whole population average 3.44 g cm?3, ranging from 2.42 g cm?3 (CI1 Orgueil) to 5.66 g cm?3 (CB Bencubbin). Magnetic susceptibilities (in log units of 10?9 m3 kg?1) averaged log χ = 4.22, ranging from 3.23 (CV3 Axtell) to 5.79 (CB Bencubbin). Porosities averaged 17%, ranging from 0 (for a number of meteorites) to 41% (for one stone of the CO Ornans). Notably, we found significant differences in porosity between the oxidized and reduced CV subgroups, with the porosities of CVo averaging approximately 20% and CVr porosities approximately 4%. Overall, porosities of carbonaceous chondrite falls trend with petrographic type, from type 1 (CI) near 35%, type 2 (CM, CR) averaging 23%, type 3 (CV, CO) 21%, to type 4 (CK and some CO) averaging 15%. There is also a significant decrease in porosity between meteorites of shock stage S1 and those of S2, indicative of shock compression.  相似文献   

16.
Abstract— We studied the petrography, mineralogy, bulk chemical, I-Xe, and O-isotopic compositions of three dark inclusions (E39, E53, and E80) in the reduced CV3 chondrite Efremovka. They consist of chondrules, calcium-aluminum-rich inclusions (CAIs), and fine-grained matrix. Primary minerals in chondrules and CAIs are pseudomorphed to various degrees by a mixture largely composed of abundant (>95%), fine-grained (>0.2 μm) fayalitic olivine (Fa35–42) and minor amounts of chlorite, poorly-crystalline Si-Al-rich material, and chromite; chondrule and CAI shapes and textures are well-preserved. Secondary Ca-rich minerals (Ti-andradite, kirschsteinite, Fe-diopside) are common in chondrule pseudomorphs and matrices in E39 and E80. The degree of replacement increases from E53 to E39 to E80. Fayalitic olivines are heavily strained and contain abundant voids similar to those in incompletely dehydrated phyllosilicates in metamorphosed CM and CI chondrites. Opaque nodules in chondrules consist of Ni- and Co-rich taenite, Co-rich kamacite, and wairauite; sulfides are rare; magnetite is absent. Bulk O-isotopic compositions of E39 and E53 plot in the field of aqueously altered CM chondrites, close to the terrestrial fractionation line; the more heavily altered E39 is isotopically heavier than the less altered E53. The apparent I-Xe age of E53 is 5.4 Ma earlier than Bjurböle and 5.7 ± 2.0 Ma earlier than E39. The I-Xe data are consistent with the most heavily altered dark inclusion, E39 having experienced either longer or later alteration than E53. Bulk lithophile elements in E39 and E53 most closely match those of CO chondrites, except that Ca is depleted and K and As are enriched. Both inclusions are depleted in Se by factors of 3–5 compared to mean CO, CV, CR, or CK chondrites. Zinc in E39 is lower than the mean of any carbonaceous chondrite groups, but in E53 Zn is similar to the means in CO, CV, and CK chondrites. The Efremovka dark inclusions experienced various degrees of aqueous alteration, followed by low degree thermal metamorphism in an asteroidal environment. These processes resulted in preferential oxidation of Fe from opaque nodules and formation of Ni- and Co-rich metal, metasomatic alteration of primary minerals in chondrules and CAIs, and the formation of fayalitic olivine and secondary Ca-Fe-rich minerals. Based on the observed similarities of the alteration mineralization in the Efremovka and Allende dark inclusions, we infer that the latter may have experienced similar alteration processes.  相似文献   

17.
Abstract– To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography‐fluorescence detection and time‐of‐flight mass spectrometry (UPLC‐FD/ToF‐MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two‐ to five‐carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts‐per‐billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five‐carbon (C5) amino acids with much higher relative abundances of the γ‐ and δ‐amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by α‐amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, α‐aminoisobutyric acid (α‐AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with l ‐isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable l ‐isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.  相似文献   

18.
Abstract— Siderophile elements have been used to constrain projectile compositions in terrestrial and lunar impact melt rocks. To obtain a better knowledge of compositional differences between potential chondritic projectile types, meteorite analyses of the elements Ru, Rh, Pd, Os, Ir, Pt, Cr, Co, Ni, and Au were gathered into a database. The presented compilation comprises 806 analyses of 278 chondrites including new ICP‐MS analyses of Allende and two ordinary chondrites. Each data set was evaluated by comparing element ratios of meteorites from the same chondrite group. Characteristic element abundances and ratios were determined for each group. Features observed in the element abundance patterns can be linked directly to the presence of certain components, such as the abundance of refractory elements Os, Ir, and Ru correlating with the occurrence of refractory inclusions in CV, CO, CK, and CM chondrites. The refined characteristic element ratios appear to be representative not only for meteorites, but also for related asteroidal bodies. Chondrite element ratios were compared to previously published values from impact melt rocks of the Popigai and Morokweng impact structures confirming that an identification of the specific type of projectile (L and LL chondrite, respectively) is possible. The assessment for Morokweng is supported by the recent discovery of an LL chondrite fragment in the impact melt rocks. Ultimately, the database provides valuable information for understanding processes in the solar nebula as they are recorded in chondrites. A new type of complementarity between element patterns of CK and EH chondrites is suggested to be the result of condensation, redox, and transportation processes in the solar nebula.  相似文献   

19.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

20.
Abstract— We have determined Nb, Y, and Zr abundances in the carbonaceous chondrites Orgueil (CI), Murray (CM2), Murchison (CM2), Allende (CV3), and Karoonda (CK4), and in the eucrites, Pasamonte and Juvinas, by a recently developed spark source mass spectrometric technique using multiple ion counting (MIC‐SSMS). The abundance of Ta was determined in the same meteorites by radiochemical neutron activation analysis (RNAA). Precision of the MIC‐SSMS and RNAA techniques is ~3% and ≤ 5%, respectively. The new abundances for CI chondrites are: Nb = 0.247, Ta = 0.0142, Zr = 3.86, Y = 1.56 μg/g; or 0.699, 0.0202, 11.2, and 4.64 atoms/106 Si atoms, respectively. The values agree with earlier compilations, but they are a factor of 2 more precise than earlier analyses. Trace element concentrations in the CM, CV, and CK chondrites are higher than in the CI chondrite Orgueil by about 37, 86, and 120%, respectively, in agreement with the variable absolute contents of refractory lithophile elements in different groups of carbonaceous chondrites. Of particular interest are the chondritic Nb/Ta, Zr/Nb, and Nb/U ratios, because these ratios are important tools for interpreting the chemical evolution of planetary bodies. We obtained Nb/Ta = 17.4 ± 0.5 for the carbonaceous chondrites and the Juvinas‐type eucrites investigated. Though this value is similar to previous estimates, it is much more precise. The same is true for Zr/Nb (15.5 ± 0.2) and Zr/Y (2.32 ± 0.12). In combination with recently published MIC‐SSMS U data for carbonaceous chondrites, we obtained a chondritic Nb/U ratio of 29 ± 2. Because Nb, Ta, Zr, Y, and U are refractory lithophile elements and presumably partitioned into the silicate phase of the Earth during core formation, the elemental ratios may also be used to constrain evolution of the Earth's primitive mantle and, with the more precise determinations fractionation of Nb and Ta during magmatic processes and mantle‐crust interactions, can now be interpreted with greater confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号