首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Smartville Complex is a late Jurassic, rifted volcanic arc in the northern Sierra Nevada, California. Near Auburn, California, it consists of a lower volcanic unit, dominated by basaltic flows, and an upper volcanic unit of andesitic volcaniclastic rocks, both of which have been intruded by dykes and irregular bodies of diabase. These rocks contain relict igneous minerals, and the metamorphic minerals albite, chlorite, quartz, pumpellyite, prehnite, epidote, amphibole, titanite, garnet, biotite, K-feldspar, white mica, calcite, and sulphide and oxide minerals.
Prehnite–pumpellyite (PrP), prehnite–actinolite (PrA), and greenschist (GS) zones have been identified. The pumpellyite-out isograd separates the PrP and PrA zones, and the prehnite-out isograd separates the PrA and GS zones. The minerals Ab + Qtz + Mt + Tn are common to most assemblages in all three zones. The MgO/(MgO + FeO) ratio of the effective bulk composition has an important and systematic effect on the observed mineral assemblages in the PrP zone. Prehnite-bearing assemblages contain the additional minerals, Pmp + Amp + Ep + Chl in MgO-rich rocks, and either Pmp + Ep + Chl or Amp + Ep + Chl in less magnesian rocks. Subcalcic to calcic amphibole is common in the PrP zone. The mineral assemblage Prh + Act + Ep + Chl, without Pmp, characterizes the PrA zone, and the mineral assemblage Act + Ep + Chl, without Prh or Pmp, characterizes the GS zone. The disappearance of pumpellyite and prehnite occurred by continuous reactions.
The sequence of mineral assemblages was produced by burial metamorphism at P–T conditions of 300° 50°C at approximately 2.5 ± 0.5 kbar. During metamorphism, the composition of the fluid phase was nearly 100% H2O and the oxygen fugacity was between the hematite–magnetite and quartz–fayalite–magnetite buffers.  相似文献   

2.
Abstract Mineral equilibria in the system CaO–MgO–Al2O3–SiO2–H2O provide a basis for mapping of four reaction isograds and one bathograd in the low-pressure transition from subgreenschist to greenschist facies. Most of the Matachewan area of the Abitibi greenstone belt is in the lower-pressure bathozone, as indicated by the widespread occurrences of the subassemblage Prh–Chl. The higher-pressure bathozone is indicated by two occurrences of Pmp–Act–Ep–Qtz, but in these samples the bathograd is displaced to anomalously low pressure by the high Fe content of the coexisting minerals. This illustrates the need to analyse coexisting minerals, calculate activities of end-member species, and compute P–T curves for individual samples before interpreting the isograd/bathograd pattern. Petrographic and microprobe analysis indicates that great care must be taken in the selection of ‘equilibrium’ assemblages. Pyroxene phenocrysts in one sample are replaced by the assemblage Pmp–Act–Ep–Chl–Qtz, whereas Prh–Act–Ep–Chl–Qtz occurs in the groundmass. Compositional variation may be more cryptic, as in a sample of metabasaltic hyaloclastite that contains two spatially distinct ‘univariant’ assemblages, Prh–Pmp–Ep–Chl–Qtz and Prh–Act–Ep–Chl–Qtz, within the devitrified matrix. Whereas chlorite compositions are similar in both assemblages, prehnite and epidote in the latter assemblage are significantly richer in Fe and poorer in Al. Accordingly, the rock is interpreted to contain two distinct ‘univariant’ assemblages, rather than one ‘invariant’ assemblage (Prh–Pmp–Act–Ep–Chl–Qtz). The displaced ‘univariant’ curves for this sample intersect at 2.2 kbar and 250°C. Taking account of all thermobarometric implications, the low-grade limit of the greenschist facies is at 250–270°C and 2–2.5 kbar, corresponding to depths of 7–8 km. Comparison of apparent P–T conditions on both sides of the Larder Lake – Cadillac break, a regional CO2-metasomatized fault zone that is spatially associated with many Archaean gold deposits, provides an upper limit of not more than c. 1 km for post-metamorphic south-side-up, dip-slip displacement.  相似文献   

3.
The Susunai Complex of southeast Sakhalin represents a subduction-related accretionary complex of pelitic and basic rocks. Two stages of metamorphism are recognized: (1) a local, low- P / T  event characterized by Si-poor calcic amphiboles; (2) a regional, high- P / T  event characterized by pumpellyite, actinolite, epidote, sodic amphibole, sodic pyroxene, stilpnomelane and aragonite. The major mineral assemblages of the high- P / T  Susunai metabasites contain pumpellyite+epidote+actinolite+chlorite, epidote+actinolite+chlorite, epidote+Na-amphibole+Na-pyroxene+chlorite+haematite. The Na- amphibole is commonly magnesioriebeckite. The Na-pyroxene is jadeite-poor aegirine to aegirine-augite. Application of empirically and experimentally based thermobarometers suggests peak conditions of T  =250–300 °C, P= 4.7–6 kbar. Textural relationships in Susunai metabasite samples and a petrogenetic grid calculated for the Fe3+-rich basaltic system suggest that pressure and temperature increased during prograde metamorphism.  相似文献   

4.
Abstract Blueschists occurring as layers in calcite marbles of the Meliata unit occur along the so-called Roznava tectonic line situated in the southern part of the Gemericum, Slovakia. Mineral assemblages and compositions from seven blueschists localities and one occurrence of amphibolite facies rocks overprinted by blueschist metamorphism were investigated. The most common minerals in the blueschists are blue amphibole, epidote and albite. Some Fe2+- and Al-rich rocks also contain garnet and chloritoid, respectively. Na-pyroxene with a maximum 50% jadeite component was also found. The blue amphiboles correspond mostly to crossite and also to glaucophane and ferroglaucophane in some samples. Almandine- and spessartine-rich garnet has very low MgO content (<3 wt%). The Si content in phengite ranges between 3.3 and 3.5 pfu calculated on the basis of 11 oxygens. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during a prograde stage of metamorphism. The P-T conditions of metamorphism are estimated to be about 380–460° C and 10–13 kbar. Pressures of 7.5–8.5 kbar and temperatures of 350–370° C were obtained for some actinolite- and aegirine-rich rocks. Apart from chlorite, other mafic minerals formed during retrograde metamorphism are biotite and occasionally also actinolite.  相似文献   

5.
Abstract Granitic orthogneiss is widespread throughout the metamorphic core of the Brooks Range in both the ductilely deformed blueschist/greenschist facies Schist Belt and the lower grade Central Belt (= Skajit allochthon) to the north. Orthogneiss occurs as large metaplutonic massifs and in small bodies enclosed within metasedimentary rocks. Crystallization ages for the granitic protoliths range from Proterozoic through Devonian (U-Pb zircon); the K-Ar system was reset during Cretaceous metamorphism. Mineral assemblages of the orthogneisses reflect nearly complete re-equilibration during Jurassic-Cretaceous collisional orogenesis in northern Alaska. The most common metamorphic paragenesis in orthogneiss is: Qtz + Kfs + Ab + Phe + Bt ± Ep, Ttn, Rt, Ap, Chl, Cal. Constituent minerals from 16 Brooks Range orthogneiss samples were analysed with the electron microprobe. Phengite from the Schist Belt samples is highly enriched in Al-celadonite, with Si values up to 3.50 per formula unit (on an 11-oxygen basis). Central Belt samples contain phengite with lower Si content (±3.38 p.f.u.). In nearly all samples, Si content of phengite varies considerably, reflecting partial re-equilibration to lower pressure and/or higher temperature conditions. Metamorphic conditions were estimated using the Phe-Bt-Kfs-Qtz barometer and the two-feldspar solvus thermometer. The results indicate that the Schist belt underwent high-pressure/low-temperature metamorphism (generally 9-12 kbar at 375-430° C), consistent with the widespread development of glaucophane + epidote/clinozoisite and lawsonite pseudomorphs in other rock types. The Central Belt also experienced a relatively high P-T metamorphism, with most samples yielding pressure estimates in the range 5-8 kbar (at 325-415° C). These results confirm the existence of two metamorphic belts in the core of the Brooks Range that differ in metamorphic conditions by up to 5 kbar. The range in Si content in phengite from Schist Belt samples is consistent with isothermal decompression of up to 5 kbar.  相似文献   

6.
A reaction producing jadeitic pyroxene in metagreywackes of the northern Diablo Range has been identified on the basis of mineral distribution, isograd patterns and composition of coexisting minerals. The appearance of jadeitic pyroxene (∼Jd80) is closely followed by the disappearance of pumpellyite, which indicates that pumpellyite plays a major role in the pyroxene-producing reaction. A new projection from hematite, lawsonite, chlorite, quartz and H2O on to the NaAlO2-FeO-MgO ternary confirms the role of pumpellyite in pyroxene production and suggests a reaction of the form: 1.00 pumpellyite + 0.31 chlorite + 8.71 albite + 0.70 hematite + 2.00 H2O = 8.54 jadeite + 0.57 glaucophane + 3.09 lawsonite + 5.26 quartz. Metagreywackes of the northern Diablo Range were metamorphosed under conditions of P H2O= P total at 200-300 °C and 7.5-10.0 kbar. Despite the low temperatures attained during metamorphism, the assumption of equilibrium yields results consistent with field observations and phase relations.  相似文献   

7.
Abstract The garnet blueschists from the Ile de Groix (Armorican Massif, France) contain millimetre‐ to centimetre‐sized pseudomorphs consisting of an aggregate of chlorite, epidote and paragonite. The pseudomorphed phase developed at a late stage of the deformation history, because it overgrows a glaucophane–epidote–titanite foliation. Garnet growth occurred earlier than the beginning of the ductile deformation, and thus garnet is also included in the pseudomorphs. Microprobe analyses show that garnet is strongly zoned, with decreasing spessartine and increasing almandine and pyrope contents from core to rim. Grossular content is higher in garnet cores (about 35 mole%) compared to garnet rims (about 30 mole%). Blue amphibole has glaucophane compositions with a low Fe3+ content and become more magnesian when inclusions in garnet (XMg = 0.62–0.65) are compared with matrix grains (XMg = 0.67–0.70). Matrix epidote has a pistacite content of about 50 mole%. On the basis of their shape and the nature of the breakdown products, the pseudomorphs are attributed to lawsonite. A numerical model (using Thermocalc ) has been developed in order to understand the reactions controlling both the growth and the breakdown of lawsonite. Lawsonite growth could have taken place through the continuous hydration reaction Chl + Ep + Pg + Qtz + Vap = Gln + Lws, followed by the fluid‐absent reaction Chl + Ep + Pg = Grt + Gln + Lws. Peak P–T conditions are estimated at about 18–20 kbar, 450 °C. This indicates that lawsonite growth took place at increasing P and T, hence can be used as a geobarometer in the buffering assemblage garnet–glaucophane–epidote. The final part of the history is recorded by lawsonite breakdown, after cessation of the ductile deformation, and recording the earliest stages of the exhumation.  相似文献   

8.
Local fluid migration through a serpentine melange caused successive carbonation of a metabasite block (about 80 meter in diameter) during the uplift stage of the glaucophanitic metamorphic rocks, the Nishisonogi metamorphics, southwest Japan. The block shows a zonal sequence as follows. Zone 1: original greenschist (Am+Ep+ Chl+Ab+Sph+Qtz). Zone 2: epidote disappears by the reaction Ep+Am+CO2+H2O=Chl+Cc+Qtz. Zone 3: balc appears by the reaction Am+CO2+H2O=Ta+Cc+ Qtz. Zone 4:sphene breakdowns by the reaction Sph+ CO2=Rt+Cc+Qtz. Zone 5: amphibole disappears by the two simultaneous reactions, Am+CO2=Do+Ta+Qtz and Ta+Cc+CO2=Do+Qtz+H2O. Zone 7: albite is replaced by chlorite, calcite, dolomite and quartz, and the assemblage of Do+Cc+Chl+Rt+Qtz is stable. Analyses of phase relations indicate an introduction of CO2-rich fluid into the greenschist body during regional metamorphism. The CO2-rich fluid may have formed by devolatilization reactions between serpentinite and graphite-bearing metasediments. The fluid migrated within the melange through a channelized pathway and into the greenschist body from a deeper part of the melange.  相似文献   

9.
Metamorphism in the late Permian to early Cretaceous North Island basement greywackes has been investigated using petrography and clay mineral crystallinity. Several terranes are represented in the North Island greywackes and the study area includes Murihiku, Manaia Hill, Bay of Islands and Omahuta terranes and the Mélange Zone. Very low-grade metamorphic events in the greywackes have produced mineral assemblages of zeolite to pumpellyite-actinolite greywacke facies. Zeolite facies greywackes are characterized by the assemblage Zeo (Lmt, Anl, Hul)+Qtz±Ab±Cal± Chl±I±I/S* observed in the entire Murihiku terrane and in the eastern part of the Bay of Islands terrane and the Mélange Zone. The entire Manaia Hill, most of the Bay of Islands, the eastern area of the Omahuta terranes and the central part of the Mélange Zone are at prehnite-pumpellyite facies with mineral assemblages of Prh+Qtz+Chl+Pmp+Ab+± Ill±Cal±Lmt. Pumpellyite-actinolite facies with the mineral assemblage of Pmp±Act+Qtz+Ab+Chl±Ep±Ill±Cal±Chl occurs in the western part of the Mélange Zone and the Omahuta terrane.

Illite (IC) and chlorite (ChC) crystallinity values of greywackes are very similar and range from diagenetic zone to anchizone. Metamorphic conditions indicated by the IC and ChC and mineral facies are in excellent agreement and correlate as follows: crystallinity diagenetic-zone with the zeolite mineral facies, crystallinity lower anchizone with prehnite-pumpellyite mineral facies and crystallinity upper anchizone with pumpellyite-actinolite mineral facies. The general increase in the metamorphic grade from east to west, except in Murihiku terrane, is compatible with the sequence of accretion expected in a subduction environment.  相似文献   


10.
Omphacite and garnet coronas around amphibole occur in amphibolites in the Hong'an area, western Dabie Mountains, China. These amphibolites consist of an epidote–amphibolite facies assemblage of amphibole, garnet, albite, clinozoisite, paragonite, ilmenite and quartz, which is incompletely overprinted by an eclogite facies assemblage of garnet, omphacite and rutile. Coronas around amphibole can be divided into three types: an omphacite corona; a garnet–omphacite–rutile corona; and, a garnet–omphacite corona with less rutile. Chemographic analysis for local reaction domains in combination with petrographical observations show that reactions Amp + Ab + Pg = Omp +Czo + Qtz + H2O, and Amp + Ab = Omp ± Czo + Qtz + H2O may lead to the development of omphacite coronas. The garnet–omphacite–rutile corona was formed from the reaction Amp + Ab + Czo + Ilm ± Qtz = Omp + Grt + Rt + H2O. In garnet–omphacite coronas, the garnet corona grew during an early stage of epidote amphibolite facies metamorphism, whereas omphacite probably formed by the reactions forming the omphacite corona during the eclogite facies stage. It is estimated that these reactions occurred at 0.8–1.4 GPa and 480–610 °C using the garnet–clinopyroxene thermometer and omphacite barometer in the presence of albite.  相似文献   

11.
The Cazadero blueschist allochthon lies within the Central MelangeBelt of the Franciscan assemblage in the northern Coast Rangeof California. Mineral compositions and assemblages of morethan 200 blueschists from Ward Creek were investigated. Theresults delineate lawsonite-, pumpellyite-, and epidote-zones.The lawsonite and pumpellyite zones are equivalent to the TypeII metabasites of Coleman & Lee (1963) and are characterizedby well-preserved igneous textures, relict augite, and pillowstructures, whereas epidote zone rocks are equivalent to theType III strongly deformed and schistose metabasites. Chlorite,phengite, aragonite, sphene, and minor quartz and albite areubiquitous. The lawsonite zone metabasites contain lawsonite ( < 3 wt.per cent Fe2O3), riebeckite-crossite, chlorite, and Ca-Na-pyroxene;some rocks have two distinct clinopyroxenes separated by a compositionalgap. The clinopyroxene of the lowest grade metabasites containsvery low Xjd. In pumpellyite zone metabasites, the most commonassemblages contain Pm + Cpx + Gl + Chl and some samples withhigher Al2O3 and/or Fe2O3 have Pm + Lw + Cpx + Chl, Actinolitejoins the above assemblage in the upper pumpellyite zone wherethe actinolite-glaucophane compositional gap is well defined.The epidote zone metabasites are characterized by the assemblagesEp + Cpx + two amphiboles + Chl, Lw + Pm + Act + Chl, and Ep+ Pm + two amphiboles + Chl depending on the Fe2O3 content ofthe rock. In the upper epidote zone, winchite appears, Fe-freelawsonite is stable, pumpellyite disappears and omphacite containsvery low Ac component. Therefore, the common assemblages areEp + winchite + Lw, and Lw + Omp + winchite. With further increasein metamorphic grade, epidote becomes Al-rich and lawsoniteis no longer stable. Hence Ep + winchite + omphacite ? garnetis characteristic. Mineral assemblages and paragenetic sequences delineate threediscontinuous reactions: (1) pumpellyite-in; (2) actinolite-in;and (3) epidote-in reactions. Using the temperatures estimatedby Taylor & Coleman (1968) and phase equilibria for Ca-Na-pyroxenes,the PT positions of these reactions and the metamorphicgradient are located. All three metabasite zones occur withinthe aragonite stability field and are bounded by the maximumpressure curve of Ab = Jd + Qz and the maximum stabilities ofpumpellyite and lawsonite. The lawsonite zone appears to bestable at T below 200?C with a pressure range of 4–6?5kb; the pumpellyite zone between 200 and 290?C and the epidotezone above 290?C with pressure variation between 6?5 and 9 kb.The metamorphic field gradient appears to have a convex naturetowards higher pressure. A speculative model of underplatingseamounts is used to explain such feature.  相似文献   

12.
The metabasites within the Tokoro belt of eastern Hokkaido,Japan, suffered pervasive high–P/ Tetamorphism. Mineralassemblages and compositions of more than 400 metabasites fromthe Saroma–Tokoro district were investigated. The metabasites are divided into six metamorphic zones basedon mineral assemblages. The laumontite (Lm) zone is definedby the presence of laumontite. The prehnite–pumpellyite(Pr–Pp) zone is characterized by the association of prehnite+ pumpellyite. The lawsonite–sodic. pyroxene (Lw–Napx)zone is defined by the assemblage lawsonite + pumpellyite +sodic pyroxene + chlorite. The epidote–sodic pyroxene(Ep–Napx)(1) and (2) zones are charecterized by the assemblage epidote+ pumpellyite + sodic pyroxene + chlorite. The former is characterizedby the absence of aragonite, sodic amphibole, and winchite,as well as the presence of jadeite–poor sodic pyroxene(maxJd mol% = 13), whereas these minerals occur in the Ep–Napx(2)zone, together with jadeite–rich sodic pyroxene (max.Jd mol % = 34). In the epidote–actinolite (Ep–Act)zone, the most common assemblages contain epidote+ actionolite+ pumpellyite + chlorite. The Lm zone corresponds to the zeolite facies (150–200?Cand 1–2 kb) and the Pr–Pp zone is equivalent tothe prehnite–pumpellyite facies (200–250?C and 2–2–5kb). The Ep–Napx(I) zone appears to be stable at 200–250?C and 2? 5?3?5 kb. The pressure conditions in the Lw–Napx,Ep-Napx(2), and Ep–Act zones appear to range from 5 to6 kb, and the temperatures are estimated to be 200–230,230–270, and 270–300? C, respectively. The sequenceof the metamorphic zones is charaterized by the curved P–Tpath. The stability field of pumpellyite+ sodic+ pyroxene+ chloritein Fe3+ bearing metabasites is located in the lower–temperatureand higher–pressure part of the pumpellyite–actionolitefacies. On the basis of Schreinmaker's method, the stabilityfield of the assemblage is bounded by a high–pressurereaction Pp+ Napx+ Chl+ Ab+ Qz+ H2O= Lw+ Gl, and by a high-temperaturereaction Pp Napx+ Chl+ Ab+ Qz = Ep + Gl + H2O.  相似文献   

13.
ABSTRACT Metabasalts and metasedimentary rocks of the Devonian Central Metamorphic Belt comprise the lower plate of the east-dipping Trinity thrust system in the Klamath province. An inverted metamorphic gradient is preserved in the Central Metamorphic Belt; metamorphic conditions decrease from amphibolite facies adjacent to the Trinity thrust, through albite-epidote amphibolite facies, to upper greenschist facies at the base of the Central Metamorphic Belt. Mineral chemistry, mineral assemblages and limited geothermometry suggest that peak metamorphic conditions decrease structurally downward from 650 ± 50° C at the Trinity thrust to 500 ± 50° C at the base of the Central Metamorphic Belt, under pressures of 5 ± 3 kbar. Synmetamorphic Ab + Qtz veins, up to 1 m thick, increase in abundance towards the Trinity thrust. Infiltration of H2O-CO2 fluids derived from prograde devolatilization reactions in the Central Metamorphic Belt caused extensive hydration and metasomatism of the Trinity peridotite; the hanging wall block of the Trinity thrust zone. Geological relationships and the preserved inverted metamorphic gradient suggest that the Central Metamorphic Belt formed in an east-dipping Devonian subduction zone in an oceanic environment. The Central Metamorphic Belt appears to represent a discrete slice of accreted oceanic crust several km thick, rather than progressively accreted material. Metamorphic pressures recorded by the Central Metamorphic Belt are intermediate between the ∼2 kbar pressures recorded in dynamothermal aureoles beneath obducted ophiolites and the 7–10 kbar preserved in subduction-related inverted metamorphic gradients. The lack of blueschist facies mineral assemblages in the Central Metamorphic Belt may possibly be explained by an anomalously warm geotherm prior to subduction or early shear heating prior to the arrival of wet rocks at depth.  相似文献   

14.
A new petrogenetic grid for low-grade metabasites   总被引:7,自引:0,他引:7  
Abstract We have used internally-consistent thermodynamic data to present calculated phase equilibria for the system Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASH), in the range 0–500° C and 0.1–10 kbar, involving the phases anorthite, glaucophane, grossular, heulandite, jadeite, laumontite, lawsonite, paragonite, prehnite, pumpellyite, stilbite, tremolite, wairakite, zoisite with excess albite, clinochlore, quartz and pure water. Average activity terms derived from published mineral chemical data were included for clinochlore, glaucophane, prehnite, pumpellyite, tremolite, and zoisite. The new petrogenetic grid delineates stability fields and parageneses of common index minerals in zeolite, prehniteactinolite, prehnite-pumpellyite, pumpellyite-actinolite, blueschist and greenschist facies metabasites. The stability fields of mineral assemblages containing prehnite, pumpellyite, epidote, actinolite (+ albite + chlorite + quartz) were analysed in some detail, using activity data calculated from five specific samples. For example, the prehnite-actinolite facies covers a P-T field ranging from about 220 to 320° C at pressures below 4.5 kbar. The transition from the prehnite-actinolite and pumpellyite-actinolite to greenschist facies occurs at about 250–300° C at 1–3 kbar and at about 250–350° C at 3–8 kbar. P-T fields of individual facies overlap considerably due to variations in chemical composition.  相似文献   

15.
Abstract Petrological data from intercalated pelitic schists and greenstones are used to construct a pressure–temperature path followed by the Upper Schieferhülle (USH) series during progressive metamorphism and uplift in the south-west Tauern Window, Italy. Pseudomorphs of Al–epidote + Fe-epidote + albite + oligoclase + chlorite after lawsonite and data on amphibole crystal chemistry indicate early metamorphism in the lawsonite-albite-chlorite subfacies of the blueschist facies at P ± 7–8 kbar. Geothermometry and geobarometry yield conditions of final equilibration of the matrix assemblage of 475±25°C, 5–6 kbar; calculations with plagioclase and phengite inclusions in garnet indicate early garnet growth at pressures of ∼ 7.5 kbar. Garnet zoning patterns are complex and reversals in zoning can be correlated between samples. Thermodynamic modelling of these zoning profiles implies garnet growth in response to four distinct phases of tectonic activity. Fluid inclusion data from coexisting immiscible H2O–CO2–NaCl fluids constrain the uplift path to have passed through temperatures of 380 + 30°C at 1.3 + 0.2 kbar.
There is no evidence for metamorphism of USH at pressures greater than ∼ 7.5 kbar in this area of the Tauern Window. This is in contrast to pressures of ± 10 kbar recorded in the Lower Schieferhülle only 2–3 km across strike. A history of differential uplift and thinning of the intervening section during metamorphism is necessary to reconcile the P–T data obtained from these adjacent tectonic units.  相似文献   

16.
Phase analysis in the model K2O-poor aluminous rock system (FMASH) illustrates the following sequence of reactions during retrograde metamorphism in the Botswanan Limpopo Central Zone:
Opx+Sil+Qtz=Crd ,
Opx+Sil=Spr+Crd ,
Grt+Qtz=Opx+Crd ;
Opx+Crd+W=Ged+Qtz ,
Grt+Opx+Crd+W=Ged ;
and
Grt+Qtz+W=Ged+Crd .
A quantitative petrogenetic grid with phase relations shows that sapphirine results from nearly isothermal decompression in the quartz-undersaturated portions of the grid, and that gedrite formation by reactions (4)–(6) records isobaric cooling from high temperature ( c . 800°  C) after the decompression. Conditions for hydration in the western part of the area were 700–800°  C and c . 6  kbar, based on microthermometric data and the available garnet–cordierite geothermometer. On the basis of these conditions and predicted thermodynamic properties of gedrite, phase relations in T–X Mg space were constructed to investigate the isobaric cooling event. The results are in good agreement with the hydration P–T  path. Further, the T–X Mg topologies show that hydration of orthopyroxene in the central part of the area (reaction 4) occurred at about 800°  C and c . 5  kbar. Therefore, we conclude that the Botswanan Limpopo Central Zone has suffered isothermal decompression, similar to the Central Zone in South Africa and Zimbabwe, followed by isobaric cooling. The isobaric cooling event in the western (at c . 6  kbar) and central (at c . 5  kbar) parts of the area commenced at nearly the same temperature ( c . 800°  C), and appear to be consistent with a tectonic model that involved westward movement (thrusting) of the Central Zone.  相似文献   

17.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

18.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

19.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   

20.
The Tormes Gneissic Dome (TGD, NW sector of the Iberian Massif, Spain) is a high-grade metamorphic complex affected by a major episode of extensional deformation (D2). The syn-D2 P–T  path of the Lower Unit of the TGD was deduced from the analysis of reaction textures related to superimposed fabrics developed during exhumation, analysis of mineral zoning and thermobarometric calculations. It comprises an initial phase of decompression, determined using the tweequ thermobarometric technique, from 6.4–8.1 kbar at 735–750 °C (upper structural levels) and 7.2 kbar at 770 °C (lower structural levels) to 3.3–3.9 kbar and 645–680 °C. This evolution is consistent with the observed sequence of melting reactions and the generation of garnet- and cordierite-bearing anatectic granitoids. The later part of the syn-D2 P–T  path consisted of almost isobaric cooling associated with the thermal re-equilibration of the unit in the new structural position. This segment of the P–T  path is recorded by assemblages with And +Bt+Ms and Ms+ Chl +Ab related to the later mylonitic S2 fabrics, which indicate retrogression to low-amphibolite and greenschist facies conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号