首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study, using an experimental approach, focuses on the effect of downward seepage on a threshold alluvial channel morphology and corresponding turbulent flow characteristics. In all the experiments, we observed that the streamwise time‐averaged velocities and Reynolds shear stresses were increased under the influence of downward seepage. Scales of eddy length and eddy turnover time were significantly increased with the application of downward seepage, leading to sediment transport and initiation of bedforms along the channel length. As the amount of seepage discharge increased, eddy length and turnover time were further increased, causing the development of larger bedforms. It was revealed that the geometry of bedforms was linked with the size of eddies. In this work, statistics of bedform dynamics are presented in terms of multi‐scalar bedforms in the presence of seepage. These multi‐scalar ubiquitous bedforms cast a potential impact on flow turbulence as well as stream bed morphology in channels. We used wavelet to analyse temporally lagged spatial bed elevation profiles that were obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuations at different length scales. A spatial cross‐correlation analysis, based on the wavelet coefficients, was performed on these bed elevation datasets to observe the effect of downward seepage on the dynamic behaviour of bedforms at different length scales. It was found that celerity of bedforms reduced with increase in seepage percentage. Bedform celerity was best approximated by a probability density function such as Rayleigh distribution under varying downward seepage. Further, statistical analysis of physical parameters of bedforms ascertained that the reduction in bedform celerity was a result of increased bedform size. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Experimental investigations have been done to analyze turbulent structures in curved sand bed channels with and without seepage. Measures of turbulent statistics such as time‐averaged near‐bed velocities, Reynolds stresses, thickness of roughness sublayer and shear velocities were found to increase with application of downward seepage. Turbulent kinetic energy and Reynolds normal stresses are increased in the streamwise direction under the action of downward seepage, causing bed particles to move rapidly. Analysis of bursting events shows that the relative contributions of all events (ejections, sweeps and interactions) increase throughout the boundary layer, and the thickness of the zone of dominance of sweep events, which are responsible for the bed material movement, increases in the case of downward seepage. The increased sediment transport rate due to downward seepage deforms the cross‐sectional geometry of the channel made of erodible boundaries, which is caused by an increase in flow turbulence and an associated decrease in turbulent kinetic energy dissipation and turbulent diffusion.  相似文献   

3.
Studies on emergent flow over vegetative channel bed with downward seepage   总被引:2,自引:2,他引:0  
Experimental observations in a tilting flume having a bed covered with rice plants (Oryza sativa) are used to analyse the flow characteristics of flexible emergent vegetation with downward seepage. The flow velocity for no-seepage and with seepage is reduced by, on average, 52% and 33%, respectively, as the flow reaches the downstream end with vegetation. Higher Reynolds stress occurs at the start of the vegetation zone; hence, bed material transport occurs in this region. The results indicate that the bed is no longer the primary source of turbulence generation in vegetated flow; rather it is dominated by turbulence generated by the vegetation stems. The local effect of the presence of vegetation causes variations in the hydrodynamic characteristics along the vegetated portion of the channel, which leads to erosion and deposition in the vegetation zone. The experiments show that vegetation can provide considerable stability to channels by reducing channel erosion even with downward seepage.  相似文献   

4.
Although flow turbulence in rivers is of critical importance to earth scientists, ecologists and engineers, its relations with larger flow scales are not well understood, thus leaving a fundamental gap in our knowledge. From an analysis of a long time series of the streamwise and vertical flow velocity fluctuations measured in a gravel‐bed river, we show that the signature of the fundamental turbulent flow structures (e.g. ejections and sweeps) is embedded within increasingly larger flow scales in a self‐similar manner. The imbrication of turbulent structures into large flow pulsations of flow acceleration and deceleration covers more than two‐orders of magnitude from a few seconds to nearly 10 minutes. This property is explained by the clustering of turbulent events creating an emergent pattern at larger scales. The size of the larger flow pulsations scales with the spacing of the pools and riffles in the river. This implies a mutual adjustment between turbulence generation mechanisms and long pulsations of flow acceleration and deceleration controlled by the bed morphology. These results bridge a gap in our understanding of flows in rivers and offer a new perspective on the interactions between the turbulent flow with larger scales of flow motion that are critical for sediment transport, habitat selection and fish behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Fluctuations of the plasma bulk velocity across the plasma sheet are studied using single-point measurements from the Corall instrument on board the Interball/Tail satellite. Several hour-long intervals of continuous data corresponding to quiet geomagnetic conditions and different phases of isolated substorms are analyzed. The plasma sheet flow appears to be strongly turbulent, i.e. dominated by fluctuations that are unpredictable. Corresponding eddy diffusion coefficients were obtained as a function of the autocorrelation time and rms velocity of the fluctuations. It was found that the amplitude of the turbulence and the values of eddy-diffusion coefficients increase significantly during substorm growth and expansion phases and they decrease to their initial level during the recovery phase. We also studied a relationship between the eddy-diffusion coefficients and the absolute value of the geomagnetic field, also measured by the Interball/Tail satellite. It was found that this relationship varies depending on the phase of substorm, indicating possible change in the turbulence regimen with substorm phase.  相似文献   

6.
《国际泥沙研究》2020,35(1):42-56
Submerged vanes are hydrofoils utilized to manage the sediment transport through the river by generating the turbulence in the flow in the form of helical currents.The vanes are placed in the flow with respect to its direction at angle of 10°to 40°.In the current study,an attempt has been made to study the effect of the introduction of vanes in form of rows on parameters like turbulence intensities,Reynolds stresses,turbulent kinetic energy,anisotropy index,and the velocity profile of the flow.It is observed that the profile of variation of turbulence intensities,turbulent kinetic energy,vertical Reynolds stress and velocity over three different marked verticals on a transect are nearly identical whereas a large scatter is observed in the variation of transverse Reynolds stress over the vertical of the aforementioned vertical locations.This observation suggests that flow turbulence is homogeneous over the vertical while scattering in the variation of the transverse Reynolds stress component may be attributed to the presence of secondary currents in the flow.After introducing rows of submerged vanes,the bed turbulence is reduced,hence,helping reduce many scour related phenomenon.It is also observed that a vortex occurred at 0.85 times the height of the vane and the variation of turbulence quantities in the presence of vanes shows the existence of a peak in these quantities.It is observed that as flow moves away from the vane rows,due to the interaction of vortices and the action of vorticity,vortices dampens down and the flow regains homogeneity.After the introduction of submerged vane rows,bed shear stress reduces as fluid from the surface replaces the slow-moving fluid near the bed due to the secondary currents generated by the vanes leading to reduction in the magnitude of turbulence intensities,Reynolds stresses,and turbulent kinetic energy near the bed.The anisotropy index is observed to increase near the bed as induced secondary currents enhanced the turbulence production in the near bed region.All the profiles of parameters obtained in the current study show the existence of a peak or inflexions at a height of 0.85 H from bed(Where,H is the height of the submerged vane).Profiles of parameters obtained in the current study suggest that as the vorticity dampens the vane-generated secondary currents,the scattering in the profiles along the vertical reduces and profiles are observed to regain the variation which they had before the introduction of vane rows,suggesting that flow turbulence has regained its homogeneity.  相似文献   

7.
利用中尺度气象数值模式(Weather Research and Forecasting Model,WRF)模拟风场,结合兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)湍流观测资料,分析了黄土高原复杂地形上稳定边界层低空急流对近地层湍流活动的影响.黄土高原复杂地形上稳定边界层低空急流的形成与地形作用引发的局地环流有关.低空急流对近地层湍流活动有强烈影响,剪切作用使小尺度湍涡活动加剧,湍动能增大,同时非平稳运动被压制.低空急流发生时,观测数据有87.3%是弱稳定情形(梯度理查森数小于0.25);而无低空急流时,对应时段的观测表明65.4%属于强稳定层结(梯度理查森数大于0.3),非平稳运动造成湍流功率谱在低频端迅速增大.与无低空急流和弱低空急流情形相比,强低空急流发生时,近地层湍动能增大1倍,湍动能在垂直方向上的传递增大1个量级,且方向向下,约为-3 × 10-3 m3·s-3,湍流在上层产生并向下传递.  相似文献   

8.
Sediment movement in the wave boundary layer above a mobile sediment bed is complex.A velocity formula for the boundary layer is proposed for sheet flow induced by asymmetric waves above a mobile sediment bed.The formula consists of a free stream velocity and a defect function which contains a phase-lead,boundary layer thickness and mobile sediment bed.Phase-lag of sediment movement is considered in the formula for the mobile sediment bed.The formula needs six dependent variables about asymmetric wave and sediment characteristics.Asymmetry effects on parameters(orbital amplitude,roughness height,bed shear stress,and boundary layer thickness)are properly considered such that the formula can yield velocity differences among onshore,offshore,acceleration,and deceleration stages.The formula estimates the net boundary layer velocity resulting from the mobile sediment bed and asymmetric boundary layer thickness.In addition,a non-constant phase-lead also contributes to the net boundary layer velocity in asymmetric oscillatory sheet flow.Results of the formula are as good as that of a two-phase numerical model.Sheet flow transport induced by asymmetric waves,and the offshore net sediment transport rate with a large phase-lag under velocity-skewed waves,can be adequately estimated by the formula with a power sediment concentration function.  相似文献   

9.
A numerical model is presented that compute the geometrical dimensions and movement of downstream migrating antidunes. The model solves the Navier–Stokes equations together with the k‐epsilon turbulence model to find the water flow field over the bedforms. A two‐dimensional width‐averaged grid is used. The bed elevation changes are computed by solving the convection–diffusion equation for suspended sediments and bedload, together with the Engelund–Hansen sediment transport formula. The free surface is computed with an algorithm based on water continuity in the surface cells. Non‐orthogonal adaptive grids were used, moving vertically with the computed location of the bed and the free water surface. The numerical model was tested on data from a physical model study where regular downstream migrating antidunes had been observed. The numerical model started out with a flat bed and the trains of antidunes formed over time. Many of the physical processes observed in earlier studies were replicated by the numerical model. Four dune parameters were computed in the current tests: The antidune wavelength, height and celerity, together with the average water depth. The antidune wavelengths were best predicted with an accuracy of 3 to 8% compared with the measurements. The antidune heights were computed with a deviation of 11 to 25% compared with an empirical formula. The water depths over the antidunes were predicted with an accuracy of 3 to 9% related to the measured values. The average antidune celerity was the parameter with largest deviation: For the coarsest grid it was overpredicted with 37%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Northern rivers experience freeze‐up over the winter, creating asymmetric under‐ice flows. Field and laboratory measurements of under‐ice flows typically exhibit flow asymmetry and its characteristics depend on the presence of roughness elements on the ice cover underside. In this study, flume experiments of flows under a simulated ice cover are presented. Open water conditions and simulated rough ice‐covered flows are discussed. Mean flow and turbulent flow statistics were obtained from an Acoustic Doppler Velocimeter (ADV) above a gravel‐bed surface. A central region of faster flow develops in the middle portion of the flow with the addition of a rough cover. The turbulent flow characteristics are unambiguously different when simulated ice covered conditions are used. Two distinct boundary layers (near the bed and in the vicinity of the ice cover, near the water surface) are clearly identified, each being characterized by high turbulent intensity levels. Detailed profile measurements of Reynolds stresses and turbulent kinetic energy indicate that the turbulence structure is strongly influenced by the presence of an ice cover and its roughness characteristics. In general, for y/d > 0·4 (where y is height above bed and d is local flow depth), the addition of cover and its roughening tends to generate higher turbulent kinetic energy values in comparison to open water flows and Reynolds stresses become increasingly negative due to increased turbulence levels in the vicinity of the rough ice cover. The high negative Reynolds stresses not only indicate high turbulence levels created by the rough ice cover but also coherent flow structures where quadrants one and three dominate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Flume experiments were conducted on different bed stages across the ripple–dune transition. As flow velocity increases, an initially flat bed surface (made of fairly uniform sandy material) is gradually transformed into a two‐dimensional rippled bed. With further increase in velocity, two‐dimensional ripples are replaced by irregular, linguoid ripples. As the average velocity necessary for the ripple–dune transition to occur is imposed on the bed surface, these non‐equilibrium linguoid ripples are further transformed into larger, two‐dimensional dunes. For each of these stages across the transition, a concrete mould of the bed was created and the flow structure above each fixed bed surface investigated. An acoustic Doppler velocimeter was used to study the flow characteristics above each bed surface. Detailed profiles were used along a transect located in the middle of the channel. Results are presented in the form of spatially averaged profiles of various flow characteristics and of contour maps of flow fields (section view). They clearly illustrate some important distinctions in the flow structure above the different bedform types associated with different stages during the transition. Turbulence intensity and Reynolds stresses gradually increase throughout the transition. Two‐dimensional ripples present a fairly uniform spatial distribution of turbulent flow characteristics above the bed. Linguoid ripples induce three‐dimensional turbulence structure at greater heights above the bed surface and turbulence intensity tends to increase steadily with height above bed surface in the wake region. A very significant increase in turbulence intensity and momentum exchange occurs during the transition from linguoid ripples to dunes. The turbulent flow field properties above dunes are highly dependent on the position along and above the bed surface and these fields present a very high degree of spatial variability (when compared with the rippled beds). Further investigations under natural conditions emphasizing sediment transport mechanisms and rates during the transition should represent the next step of analysis, together with an emphasis on quadrant analysis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Within a wave-exposed mangrove forest, novel field observations are presented, comparing millimeter-scale turbulent water velocity fluctuations with contemporaneous subtidal bed elevation changes. High-resolution velocity and bed level measurements were collected from the unvegetated mudflat, at the mangrove forest fringe, and within the forest interior over multiple tidal cycles (flood–ebb) during a 2-week period. Measurements demonstrated that the spatial variability in vegetation density is a control on sediment transport at sub-meter scales. Scour around single and dense clusters of pneumatophores was predicted by a standard hydraulic engineering equation for wave-induced scour around regular cylinders, when the cylinder diameter in the equations was replaced with the representative diameter of the dense pneumatophore clusters. Waves were dissipated as they propagated into the forest, but dissipation at infragravity periods (> 30 s) was observed to be less than dissipation at shorter periods (< 30 s), consistent with the predictions of a simple model. Cross-wavelet analysis revealed that infragravity-frequency fluctuations in the bed level were occasionally coherent with velocity, possibly indicating scour upstream of dense pneumatophore patches when infragravity waves reinforced tidal currents. Consequently, infragravity waves were a likely driver of sediment transport within the mangrove forest. Near-bed turbulent kinetic energy, estimated from the turbulent dissipation rate, was also correlated with bed level changes. Specifically, within the mangrove forest and over the unvegetated mudflat, high-energy events were associated with erosion or near-zero bed level change, whereas low-energy events were associated with accretion. In contrast, no single relationship between bed level changes and mean current velocity was applicable across both vegetated and unvegetated regions. These observations support the theory that sediment mobilization scales with turbulent energy, rather than mean velocity, a distinction that becomes important when vegetation controls the development of turbulence.  相似文献   

15.
Entrainment of sediment particles from channel beds into the channel flow is influenced by the characteristics of the flow turbulence which produces stochastic shear stress fluctuations at the bed. Recent studies of the structure of turbulent flow has recognized the importance of bursting processes as important mechanisms for the transfer of momentum into the laminar boundary layer. Of these processes, the sweep event has been recognized as the most important bursting event for entrainment of sediment particles as it imposes forces in the direction of the flow resulting in movement of particles by rolling, sliding and occasionally saltating. Similarly, the ejection event has been recognized as important for sediment transport since these events maintain the sediment particles in suspension. In this study, the characteristics of bursting processes and, in particular, the sweep event were investigated in a flume with a rough bed. The instantaneous velocity fluctuations of the flow were measured in two-dimensions using a small electromagnetic velocity meter and the turbulent shear stresses were determined from these velocity fluctuations. It was found that the shear stress applied to the sediment particles on the bed resulting from sweep events depends on the magnitude of the turbulent shear stress and its probability distribution. A statistical analysis of the experimental data was undertaken and it was found necessary to apply a Box-Cox transformation to transform the data into a normally distributed sample. This enabled determination of the mean shear stress, angle of action and standard error of estimate for sweep and ejection events. These instantaneous shear stresses were found to be greater than the mean flow shear stress and for the sweep event to be approximately 40 percent greater near the channel bed. Results from this analysis suggest that the critical shear stress determined from Shield's diagram is not sufficient to predict the initiation of motion due to its use of the temporal mean shear stress. It is suggested that initiation of particle motion, but not continuous motion, can occur earlier than suggested by Shield's diagram due to the higher shear stresses imposed on the particles by the stochastic shear stresses resulting from turbulence within the flow.  相似文献   

16.
We present detailed observations of internally generated turbulence in a sheared, stratified natural flow, as well as an analysis of the external factors leading to its generation and temporal variability. Multi-month time series of vertical profiles of velocity, acoustic backscatter (0.5 Hz), and turbulence parameters were collected with two moored acoustic Doppler current profilers (ADCPs) in the Hudson River estuary, and estuary-long transects of water density were collected 30 times. ADCP backscatter is used for visualization of coherent turbulent structures and evaluation of surface wave biases to the turbulence measurements. Benefits of the continuous long-term turbulence record include our capturing: (1) the seasonality of turbulence due to changing riverflow, (2) hysteresis in stratification and turbulence over the fortnightly cycle of tidal range, and (3) intermittent events such as breaking internal waves. Internal mixing layers (IMLs) are defined as turbulent regions above the logarithmic velocity layer, and the bottom boundary layer (BBL) is defined as the continuously turbulent range of heights above the bed. A cross-correlation analysis reveals how IML and BBL turbulence vary with stratification and external forcing from tidal range, river flow, and winds. Turbulence in both layers is maximal at spring tide and minimal when most stratified, with one exception—IML turbulence at a site with changing channel depth and width is maximal at times of maximum stratification and freshwater input.  相似文献   

17.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

18.
The presence of sediment particles in open-channel flow has an important effect on turbulence; thus, an empirical, turbulent eddy viscosity formula was established for application in the limit for low concentrations. The current study establishes a theoretical relation for the mixture viscosity based on the two-phase mixture model. The percentage contribution of the three mechanisms of mixture viscosity,namely, fluid turbulence(FT), particle turbulence(PT), and inter-particle collisions(IPCs), w...  相似文献   

19.
Turbulence in mobile-bed streams   总被引:2,自引:1,他引:1  
This study is devoted to quantify the near-bed turbulence parameters in mobile-bed flows with bed-load transport. A reduction in near-bed velocity fluctuations due to the decrease of flow velocity relative to particle velocity of the transporting particles results in an excessive near-bed damping in Reynolds shear stress (RSS) distributions. The bed particles are associated with the momentum provided from the flow to maintain their motion overcoming the bed resistance. It leads to a reduction in RSS magnitude over the entire flow depth. In the logarithmic law, the von Kármán coefficient decreases in presence of bed-load transport. The turbulent kinetic energy budget reveals that for the bed-load transport, the pressure energy diffusion rate near the bed changes sharply to a negative magnitude, implying a gain in turbulence production. According to the quadrant analysis, sweep events in mobile-bed flows are the principal mechanism of bed-load transport. The universal probability density functions for turbulence parameters given by Bose and Dey have been successfully applied in mobile-bed flows.  相似文献   

20.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号