首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface soil water content (SWC) is one of the key factors controlling wind erosion in Sistan plain, southeast of Iran. Knowledge of the spatial variability of surface SWC is then important to identify high-risk areas over the region. Sequential Gaussian simulation (SGSIM) is used to produce a series of equiprobable models of SWC spatial distribution across the study area. The simulated realizations are used to model the uncertainty attached to the surface SWC estimates through producing a probability map of not exceeding a specified critical threshold when soil becomes vulnerable to wind erosion. The results show that SGSIM is a suitable approach for modelling SWC uncertainty, generating realistic representations of the spatial distribution of SWC that honour the sample data and reproduce the sample semivariogram model. The uncertainty model obtained using SGSIM is compared with the model achieved through sequential indicator simulation (SISIM). According to accuracy plots, goodness statistics and probability interval width plots, SGSIM performs better for modelling local uncertainty than SISIM. Sequential simulation provided a probabilistic approach to assess the risk that SWC does not exceed a critical threshold that might cause soil vulnerability to wind erosion. The resulted risk map can be used in decision-making to delineate “vulnerable” areas where a treatment is needed.  相似文献   

2.
Soil erodibility (K) affects sediment delivery to streams and needs to be appropriately quantified and interpolated as a fundamental geographic variable for implementing suitable catchment management and conservation practices. The spatial distribution of K for erosion modelling at non-sampling grid locations has traditionally been estimated using interpolation algorithms such as kriging which do not adequately represent the uncertainty of estimates. These methods cause smoothing effects through overestimating the low values and underestimating the large values. In this study observed values were used to implement a sequential Gaussian simulation (SGS) procedure to evaluate the certainty of modelled data. Soil erodibility values were computed using 41 soil samples taken from the top 10 cm soil layer regularly distributed across four catchments, 367–770 ha in area, within Kangaroo River State forest, New South Wales (NSW). One hundred realisations were applied in the simulation process to provide spatial uncertainty and error estimates of soil erodibility. The results indicated that values simulated by the SGS algorithm produced similar K values for the neighbouring cells. At the pixel level, the SGS approach generated a reliable estimation of soil erodibility in most areas. Spatial variation of the K factor in this study was strongly related to soil landscape differences across the catchments; within catchments slope gradient did not have a substantial impact on the numerical values of the K factor using pixel-by-pixel comparisons of raster grid maps.  相似文献   

3.
Soil erosion is one of most widespread process of degradation. The erodibility of a soil is a measure of its susceptibility to erosion and depends on many soil properties. Soil erodibility factor varies greatly over space and is commonly estimated using the revised universal soil loss equation. Neglecting information about estimation uncertainty may lead to improper decision-making. One geostatistical approach to spatial analysis is sequential Gaussian simulation, which draws alternative, equally probable, joint realizations of a regionalised variable. Differences between the realizations provide a measure of spatial uncertainty and allow us to carry out an error analysis. The objective of this paper was to assess the model output error of soil erodibility resulting from the uncertainties in the input attributes (texture and organic matter). The study area covers about 30 km2 (Calabria, southern Italy). Topsoil samples were collected at 175 locations within the study area in 2006 and the main chemical and physical soil properties were determined. As soil textural size fractions are compositional data, the additive-logratio (alr) transformation was used to remove the non-negativity and constant-sum constraints on compositional variables. A Monte Carlo analysis was performed, which consisted of drawing a large number (500) of identically distributed input attributes from the multivariable joint probability distribution function. We incorporated spatial cross-correlation information through joint sequential Gaussian simulation, because model inputs were spatially correlated. The erodibility model was then estimated for each set of the 500 joint realisations of the input variables and the ensemble of the model outputs was used to infer the erodibility probability distribution function. This approach has also allowed for delineating the areas characterised by greater uncertainty and then to suggest efficient supplementary sampling strategies for further improving the precision of K value predictions.  相似文献   

4.
Accounting for Estimation Optimality Criteria in Simulated Annealing   总被引:1,自引:0,他引:1  
This paper presents both estimation and simulation as optimization problems that differ in the optimization criteria, minimization of a local expected loss for estimation and reproduction of global statistics (semivariogram, histogram) for simulation. An intermediate approach is proposed whereby an initial random image is gradually modified using simulated annealing so as to better match both local and global constraints. The relative weights of the different constraints in the objective function allow the user to strike a balance between smoothness of the estimated map and reproduction of spatial variability by simulated maps. The procedure is illustrated using a synthetic dataset. The proposed approach is shown to enhance the influence of observations on neighboring simulated values, hence the final realizations appear to be better conditioned to the sample information. It also produces maps that are more accurate (smaller prediction error) than stochastic simulation ignoring local constraints, but not as accurate as E-type estimation. Flow simulation results show that accounting for local constraints yields, on average, smaller errors in production forecast than a smooth estimated map or a simulated map that reproduces only the histogram and semivariogram. The approach thus reduces the risk associated with the use of a single realization for forecasting and planning.  相似文献   

5.
Mapping of erosion risk areas is an important tool for the planning of natural resources management, allowing researchers to propose the modification of land use properly and implement more sustainable long-term management strategies. The objective of this study was to assess and identify critical sub-catchments for soil conservation management using the USLE, GIS, and remote sensing techniques. The Tapacurá catchment is one of the planning units for water resource management of the Recife Metropolitan Region. Maps of the erosivity (R), erodibility (K), slope (LS), cover-management (C), and support practice (P) factors were derived from the climate database, digital elevation model, and soil and land-use maps. In order to validate the simulation process, total sediment delivery ratio was estimated. The results showed a mean sediment delivery ratio (SDR) of around 11.5?% and a calculated mean sediment yield of 0.108?t?ha?1?year?1, which is close to the observed one, 0.169?t?ha?1?year?1. The obtained soil loss map could be considered as a useful tool for environmental monitoring and water resources management. The methodology applied showed acceptable precision and allowed the identification of the most susceptible areas to soil erosion by water, constituting an important predictive tool for soil and environmental management in this region, which is highly relevant for the prediction of varying development scenarios for Tapacurá catchment. This approach can be applied to other areas for simple and reliable identification of critical areas of soil erosion in catchments.  相似文献   

6.
This study is aimed at the evaluation of the hazard of soil erosion and its verification at Boun, Korea, using a Geographic Information System (GIS) and remote sensing. Precipitation, topographic, soil, and land use data were collected, processed, and constructed into a spatial database using GIS and remote sensing data. Areas that had suffered soil erosion were analysed and mapped using the Universal Soil Loss Equation (USLE). The factors that influence soil erosion are rainfall erosivitiy (R) from the precipitation database, soil erodibility (K) from the soil database, slope length and steepness (LS) from the topographic database, and crop and management (C) and conservation supporting practices (P) from the land use database. Land use was classified from Landsat Thematic Mapper satellite images. The soil erosion map verified use of the landslide location data. Landslide locations were identified in the Boun area from interpretation of aerial photographs and field surveys.  相似文献   

7.
The universal soil loss equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices by the effective integration of the GIS-based procedures to estimate the factor values on a grid cell basis. This study was performed for five different lands uses of Indağı Mountain Pass, Cankırı to predict the soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Of the USLE factors, rainfall-runoff erosivity factor (USLE-R) and topographic factor (USLE-LS) were greatly involved in GIS. These were surfaced by correcting USLE-R site-specifically using DEM and climatic data and by evaluating USLE-LS by the flow accumulation tool using DEM and watershed delineation tool to consider the topographical and hydrological effects on the soil loss. The study assessed the soil erodibility factor (USLE-K) by randomly sampled field properties by geostatistical analysis. Crop management factor for different land-use/land cover type and land use (USLE-C) was assigned to the numerical values from crop and flora type, canopy and density of five different land uses, which are plantation, recreational land, cropland, forest and grassland, by means of reclassifying digital land use map available for the site. Support practice factor (USLE-P) was taken as a unit assuming no erosion control practices. USLE/GIS technology together with the geostatistics combined these major erosion factors to predict average soil loss per unit area per unit time. Resulting soil loss map revealed that spatial average soil loss in terms of the land uses were 1.99, 1.29, 1.21, 1.20, 0.89 t ha−1 year−1 for the cropland, grassland, recreation, plantation and forest, respectively. Since the rate of soil formation was expected to be so slow in Central Anatolia of Turkey and any soil loss of more than 1 ton ha−1 year−1 over 50–100 years was considered as irreversible for this region, soil erosion in the Indağı Mountain Pass, to the great extent, attained the irreversible state, and these findings should be very useful to take mitigation measures in the site.  相似文献   

8.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

9.
Water erosion is one of the main forms of land degradation in Algeria, with a serious repercussion on agricultural productivity. The purpose of this study is to estimate the soil loss of Wadi El-Ham watershed in the center of Algeria, this study aims also to evaluate the effectiveness and reliability of the use of the Revised Universal Soil Loss Equation (RUSLE) under a Geographic Information System in this field. The RUSLE model involves the main factors of erosion phenomena, namely, rain aggressiveness, soil erodibility, topographic factor, land cover index and the anti-erosive practices factor. Using this approach, the specific erosion in Wadi El-Ham watershed is estimated as 5.7 (t/ha/yr) in the entire watershed area. This result is compared to the measured suspended sediment at the Rocade-Sud gauging station situated outlet the watershed. These data consist of 1293 instantaneous measures of the water discharge and the suspended sediment concentration recorded during 21 years. Through this comparison, the used approach of RUSLE under GIS estimates the soil loss in Wadi El-Ham in Hodna region of Algeria with an error of 7.5%. Consequently, the results obtained in cartographic format make it possible to target the areas requiring priority action for a larger scale analysis to find appropriate solutions to combat erosion and to protect the natural environment.  相似文献   

10.
The installation of a rural settlement complex in the watershed stream Indaiá has promoted changes in land-use and vegetation cover dynamics; however, the effects of intensive agriculture and cattle farming in rural settlements on soil loss rates are not well known. Predictive models implemented in geographic information systems have proven to be effective tools for estimating erosive processes. The erosion predictive model Revised Universal Soil Loss Equation (RUSLE) is a useful tool for analyzing, establishing and managing soil erosion. RUSLE has been widely used to estimate annual averages of soil loss, by both interrill and rill erosion, worldwide. Therefore, the aim of this work was to estimate the soil loss in the watershed stream Indaiá, using the RUSLE model and geoprocessing techniques. To estimate soil loss, the following factors were spatialized: erosivity (R), erodibility (K), topography (LS), land-use and management (C) and conservation practices (P); the annual soil loss values were calculated using the RUSLE model equation. The estimated value of soil loss in the hydrographic basin ranged from 0 to 4082.16 Mg ha?1 year?1 and had an average value of 47.81 Mg ha?1 year?1. These results have demonstrated that 68.16 % of the study area showed little or no soil loss based on the Food and Agriculture Organization’s (FAO 1980) classification. When comparing the average value of soil loss obtained using the RUSLE model with the Natural Potential for Erosion, a 16-fold reduction in soil was found, which highlighted the fact that vegetation cover (C factor) has a greater influence than other factors (R, K and LS) on soil loss prediction attenuation. These results lead to the conclusion that soil loss occurs by different methods in each settlement in the basin and that erosive processes modeled by geoprocessing have the potential to contribute to an orderly land management process.  相似文献   

11.
Siruvani watershed with a surface area of 205.54 km2 (20,554 hectare), forming a part of the Western Ghats in Attapady valley, Kerala, was chosen for testing RUSLE methodology in conjunction with remote sensing and GIS for soil loss prediction and identifying areas with high erosion potential. The RUSLE factors (R, K, LS, C and P) were computed from local rainfall, topographic, soil classification and remote sensing data. This study proved that the integration of soil erosion models with GIS and remote sensing is a simple and effective tool for mapping and quantifying areas and rates of soil erosion for the development of better soil conservation plans. The resultant map of annual soil erosion shows a maximum soil loss of 14.917 t h−1 year−1 and the computations suggest that about only 5.76% (1,184 hectares) of the area comes under the severe soil erosion zone followed by the high-erosion zone (11.50% of the total area). The dominant high soil erosion areas are located in the central and southern portion of the watershed and it is attributed to the shifting cultivation, and forest degradation along with the combined effect of K, LS and C factor. The RUSLE model in combination with GIS and remote sensing techniques also enables the assessment of pixel based soil erosion rate.  相似文献   

12.
Sediment yields from natural gas well sites in Denton County, TX, USA can be substantial and warrant consideration of appropriate erosion and sediment control best management practices (BMPs). Version 2 of the revised universal soil loss equation (RUSLE 2.0) was used to predict sediment yields and evaluate the efficiency of BMPs for multiple combinations of different land surface conditions (soil erodibility and slope) commonly found at gas well sites in the area. Annual average sediment yield predictions from unprotected site conditions ranged from 12.1 to 134.5 tonnes per hectare per year (t/ha/yr). Sediment yield predictions for 1, 2, 5, and 10-year design storms ranged from 8.1 to 20.6 t/ha. When site conditions were modeled with BMPs, predicted sediment yields were 52–93% less. A comparison of modeled efficiency values to a review of laboratory and field data suggests that modeled (theoretical) sediment yield results with BMPs are likely best case scenarios. This study also evaluated BMPs in the context of site management goals and implementation cost, demonstrating a practical approach for the application of RUSLE 2.0 for managing soil loss and understanding the importance of selecting appropriate site-specific BMPs for disturbed site conditions.  相似文献   

13.
This study aims to evaluate the application of the Revised Universal Soil Loss Equation (RUSLE) on predicting of sites susceptible to slope failures caused by the soil erosion. It was carried out at the northern part of Euboea Island presenting one of the highest frequencies of landslide occurrence in Greece. All required datasets for the application of the RUSLE model were engaged to compile a potential soil erosion map of the study area. In addition, historical slope failure data were used to evaluate the produced map. Moreover, the frequency ratio statistical analysis was applied for the verification of the soil erosion map. The results showed a satisfactory agreement between the soil erosion intensity zones and distribution of landslides events. Therefore, the RUSLE model can be applied for the localization of sites susceptible to landslides that were prepared or triggered by the soil erosion. Finally, taking under consideration the contribution of erosion mechanisms over the landslides manifestation, a combination of measures were proposed for preventing and supporting these catastrophic phenomena.  相似文献   

14.
Loose sediments like loess are easily erodable especially on hillslopes used for agriculture. Erosion contributes to the sedimentation and pollution of lakes such threatening quasi-natural ecosystems. On the other hand soil erosion damages fertile soils.The aim of the present paper is the assessment of soil and nutrient loss in a tributary catchment of Lake Balaton, including geoecological aspects of the lake ecosystem and of the slopes mantled by loess.The USLE is applied for small topological units, for the so called erotops. Rainfall simulation experiments were applied for the determination of the erodibility of soils. The calculation is based on a new, GIS aided method. Control measurements have been going on for four years at a gauging station to check how much sediment and water actually leaves the catchment.Results of sediment yield measurements were compared with the results obtained by the application of USLE for the whole catchment. According to this comparison only 2% leaves the catchment so that redeposition processes within the catchment are very important whereas the contribution of soil erosion to the eutrophication of the lake is not very significant in the small tributaries in the northern part of Lake Balaton catchment.  相似文献   

15.
Land degradation is still a very common problem in the mountains of Asia because of inappropriate land use practice in steep topography. Many studies have been carried out to map shifting cultivation and areas susceptible to soil erosion. Mostly, estimated soil loss is taken as the basis to classify the level of soil loss susceptibility of area. Factors that influence soil erosion are: rainfall erosivity, soil erodibility, slope length and steepness, crop management and conservation practices. Thus the reliability of estimated soil loss is based on how accurately the different factors were estimated or prepared. As each and every small pixel of our earth surface is different from one area to another, the manner in which the study area was discretized into smaller homogenous sizes and how the most accurate and efficient technique were adopted to estimate the soil loss are very important. The purpose of this study is to produce erosion susceptibility maps for an area that has suffered because of shifting cultivation located in the mountainous regions of Northern Thailand. For this purpose, an integrated approach using RS and GIS-based methods is proposed. Data from the Upper Nam Wa Watershed, a mountainous area of the Northern Thailand were used. An Earth Resources Data Analysis System (ERDAS) imagine image processor has been used for the digital analysis of satellite data and topographical analysis of the contour data for deriving the land use/land cover and the topographical data of the watershed, respectively. ARCInfo and ARCView have been used for carrying out geographical data analysis. The watershed was discretized into hydrologically, topographically, and geographically homogeneous grid cells to capture the watershed heterogeneity. The soil erosion in each cell was calculated using the universal soil loss equation (USLE) by carefully determining its various parameters and classifying the watershed into different levels of soil erosion severity. Results show that during the time of this study most of the areas under shifting cultivation fell in the highest severity class of susceptibility.  相似文献   

16.
An attempt has been made to analyze the spatial-temporal characteristics of soil erosion vulnerability and soil loss from the forested region in the north-eastern Borneo, Sarawak, Malaysia during the last three decades (1991–2015) using the revised universal soil loss equation (RUSLE) and geographical information systems (GIS). The components of RUSLE such as rainfall erosivity (R), soil erodibility (K), slope-length and steepness (LS), cover management (C) and conservation practice (P) factors were grouped into two categories by keeping one set as temporally changing and others as static. Among them the R and C factors are calculated for the years 1991, 2001 and 2015 whereas the K and LS factors are considered for the single time frame. Because of the forested nature of the study area, the P factor is kept constant for the whole analysis. The R factor and C factor is shown changes in values and its distribution over the years, which reflected in the final soil loss and erosion vulnerability map as a change in the rate of erosion and spatial domain. The analysis of three time slices has shown that the maximum value of the soil loss per unit area i.e. at erosion hotspots, is relatively similar throughout at around 1636 to 1744 t/ha/y. This is the result of maximum values of R factor and C factor i.e. high rainfall erosivity combined with lack of vegetation cover in those hotspots, which are generally steeply sloping terrain. The reclassification of annual soil loss map into erosion vulnerability zones indicated a major increase in the spatial spread of erosion vulnerability from the year 1991 to 2015 with a significant increase in the high and critical erosion areas from 2.3% (1991) to 31.5% (2015). In 1991, over 84% of the study area was under low erosion vulnerability class but by the year 2015 only 12% was under low erosion vulnerability class. Moreover, a dynamic nature in the erosion pattern was found from the year 1991 to 2015 with more linear areas of land associated with higher rate of soil loss and enhanced erosion vulnerability. The linearity in the spatial pattern is correlated with the development of logging roads and logging activities which has been confirmed by the extraction of exposed areas from satellite images of different years of analysis. The findings of the present study has quantified the changes in vegetation cover from dense, thick tropical forest to open mixed type landscapes which provide less protection against erosion and soil loss during the severe rainfall events which are characteristic of this tropical region.  相似文献   

17.
Soil erosion is a serious environmental problem in Indravati catchment. It carries the highest amount of sediments compared with other catchments in India. This catchment spreading an area of 41,285 km2 is drained by river Indravati, which is one of the northern tributaries of the river Godavari in its lower reach. In the present study, USLE is used to estimate potential soil erosion from river Indravati catchment. Both magnitude and spatial distribution of potential soil erosion in the catchment is determined. The derived soil loss map from USLE model is classified into six categories ranging from slight to very severe risk depending on the calculated soil erosion amount. The soil erosion map is linked to elevation and slope maps to identify the area for conservation practice in order to reduce the soil loss. From the model output predictions, it is found that average erosion rate predicted is 18.00 tons/ha/year and sediment yield at the out let of the catchment is 22.30 Million tons per annum. The predicted sediment yield verified with the observed data.  相似文献   

18.
Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.  相似文献   

19.
Geographical information systems (GIS)-based soil erosion risk assessment models continue to play an important role in soil conservation planning. In the present study, soil erosion risk of Istanbul–Elmalı dam watershed was determined within GIS-based COoRdination of INformation on the Environment (CORINE) soil erosion risk assessment method. Initially soil texture, soil depth, and surface stoniness maps were created and were intersected in GIS environment in order to generating erodibility map. Then, Fournier precipitation and Bagnouls–Gaussen drought indices determined based on meteorological data and erosivity were calculated. The composed erodibility map was co-evaluated within erosivity value and slope map of the site for composing potential erosion risk map. At the final step, the previous yearly land use maps which belong to years 1984, 1992, and 2003 intersected with potential erosion risk maps and temporal actual erosion risk alteration were assessed. In conclusion, according to our results in Elmalı watershed dam in 1984 there have been low, medium, and high erosion risks at rates 29.67, 52.49, and 17.84%, respectively, whereas in 2003 the erosion risk values have changed from low to high as 26.43, 46.57, and 27.00%, respectively. Inter-year comparison alteration to the advantage of the high erosion risk could have resulted from over degradation and high exposure to anthropogenic activities.  相似文献   

20.
Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011–2040, 2041–2070, and 2071–2099, at large scale. Rainfall erosivity (R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data – IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility (K) factor map of the watershed. Topographic factors, slope length (L) and steepness (S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985–2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号