首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
— The mapping of the seismic ground motion in Bucharest, due to the strong Vrancea earthquakes is carried out using a complex hybrid waveform modeling method which combines the modal summation technique, valid for laterally homogeneous anelastic media, with finite-differences technique, and optimizes the advantages of both methods. For recent earthquakes, it is possible to validate the modeling by comparing the synthetic seismograms with the records. We consider for our computations the frequency range from 0.05 to 1.0 Hz and control the synthetic signals against the accelerograms of the Magurele station, low-pass filtered with a cut-off frequency of 1.0 Hz of the 3 last major strong (Mw > 6) Vrancea earthquakes. Using the hybrid method with a double-couple seismic source approximation, scaled for the source dimensions and relatively simple regional (bedrock) and local structure models, we succeeded in reproducing the recorded ground motion in Bucharest at a satisfactory level for seismic engineering. Extending the modeling to the entire territory of the Bucharest area, we construct a new seismic microzonation map, where five different zones are identified by their characteristic response spectra.  相似文献   

2.
Vrancea major intermediate-depth earthquakes produced extreme damage in Bucharest city, located at about 165 km epicenter distance. Our purpose is to investigate the influence of local geological conditions upon the seismic motion in Bucharest in case of large (M>7) Vrancea earthquakes. Two input data sets are used: (a) geological, geotechnical and geophysical information, including in situ measurements, and (b) acceleration recordings of Vrancea earthquakes. Local response evaluation based on first dataset is confirmed by the spectral analysis of the earthquake records. Two main features are outlined: non-stationarity of ground motion dynamic amplification from one event to other and inadequacy of limiting the investigation depth to uppermost 30 m to evaluate ground dynamic characteristics. Consequently (1) we cannot extrapolate the ground motion response determined for moderate and small earthquakes to anticipate the effects of the large Vrancea shocks and (2) the local response is controlled by the entire package of Quaternary deposits which are significantly deeper than 30 m depth beneath Bucharest Area.  相似文献   

3.
—?The mapping of the seismic ground motion in Bucharest, due to the strong Vrancea earthquakes, is carried out using a complex hybrid waveform modeling method that allows easy parametric tests. Starting from the actually available strong motion database, we can make realistic predictions for the possible ground motion. The basic information necessary for the modeling consists of: (a) The representative mechanisms for the strong subcrustal events, (b) the average regional structural model, and (c) the local structure for Bucharest. Two scenario earthquakes are considered and the source influence on the local response is analyzed in order to define generally valid ground motion parameters, to be used in the seismic hazard estimations. The source has its own (detectable) contribution on the ground motion and its effects on the local response in Bucharest are quite stable on the transversal component (T), while the radial (R) and vertical (V) components are sensitive to the scenario earthquake. Although the strongest local effects affect the T component, both observed and synthetic, a complete determination of the seismic input for the built environment requires the knowledge of all three components of motion (R, V, T). The damage observed in Bucharest for the March 4, 1977 Vrancea event, the strongest earthquake to strike the city in modern times, is in agreement with the synthetic signals and local response.  相似文献   

4.
This short article evaluates the stochastic method of ground motion simulation for Bucharest area using both the single-corner frequency model and recently introduced double-corner frequency models. A dedicated Q model is derived using ground motions obtained during the largest Vrancea earthquakes from the past 30 years. The simulated ground motions are tested against the observed data from the Vrancea earthquakes of August 1986 and May 1990. Moreover, the observed data are also compared against simulations obtained using the Q model derived by Oth et al. (2008). Finally, the results of the simulations show that the derived Q model is better suited for larger magnitude events, while the Q model of Oth et al. (2008) provides better results for smaller earthquakes.  相似文献   

5.
Microzonation of Bucharest: State-of-the-Art   总被引:3,自引:0,他引:3  
— The 1940 (Mw=7.7) and 1977 (Mw=7.4) Vrancea earthquakes (Romania) inflicted heavy damage and casualties in Bucharest and the statistics indicate a recurrence interval of 25 years for Mw 7.0 events. Under these circumstances, the seismic microzonation represents important information for detailed urban planning that establishes an appropriate level of preparedness to the earthquake threat. This paper reviews the main studies concerning the seismicity of the Vrancea region, the site conditions of the city, the characterization of the building stock, and the codes of practice that regulate the antiseismic design. The first-order microzonation of Bucharest was performed starting from the existing database of structural and geotechnical parameters. New insights originating from direct instrumental observation and interpretation of the local effects as well as realistic numerical modeling that update and improve the input data necessary for a detailed microzoning map of the city are also discussed.  相似文献   

6.
On March 4, 1977, an earthquake with a moment magnitude M w 7.4 at a hypocentral depth of 94 km hit the Vrancea region (Romania). In Bucharest alone, the earthquake caused severe damage to 33,000 buildings while 1,424 people were killed. Under the umbrella of the SAFER project, the city of Bucharest, being one of the larger European cities at risk, was chosen as a test bed for the estimation of damage and connected losses in case of a future large magnitude earthquake in the Vrancea area. For the conduct of these purely deterministic damage and loss computations, the open-source software SELENA is applied. In order to represent a large event in the Vrancea region, a set of deterministic scenarios were defined by combining ranges of focal parameters, i.e., magnitude, focal depth, and epicentral location. Ground motion values are computed by consideration of different ground motion prediction equations that are believed to represent earthquake attenuation effects in the region. Variations in damage and loss estimates are investigated through considering different sets of building vulnerability curves (provided by HAZUS-MH and various European authors) to characterize the damaging behavior of prevalent building typologies in the city of Bucharest.  相似文献   

7.
We present the regional ground-motion prediction equations for peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and seismic intensity (MSK scale) for the Vrancea intermediate depth earthquakes (SE-Carpathians) and territory of Romania. The prediction equations were constructed using the stochastic technique on the basis of the regional Fourier amplitude spectrum (FAS) source scaling and attenuation models and the generalised site amplification functions. Values of considered ground motion parameters are given as the functions of earthquake magnitude, depth and epicentral distance. The developed ground-motion models were tested and calibrated using the available data from the large Vrancea earthquakes. We suggest to use the presented equations for the rapid estimation of seismic effect after strong earthquakes (Shakemap generation) and seismic hazard assessment, both deterministic and probabilistic approaches.  相似文献   

8.
Bucharest is one of the cities most affected by earthquakes in Europe. Situated at 150–170 km distance from Vrancea epicentral zone, Bucharest had suffered many damages due to high energy Vrancea intermediate-depth earthquakes. For example, the 4 March 1977 event produced the collapse of 32 buildings with 8–12 levels, while more than 150 old buildings with 6–9 levels were seriously damaged. The studies done after this earthquake had shown the importance of the surface geological structure upon ground motion parameters. New seismic measurements are performed in Bucharest area aiming at defining better elastic and dynamic properties of the shallow sedimentary rocks. Down-hole seismic measurements were performed in a number of 10 cased boreholes drilled in the Bucharest City area. Processing and interpretation of the data lead to the conclusion that shallow sedimentary rocks can be considered weak in the area, down to 150–200 m depth. Seismic wave velocity values and bulk density values presented in the paper associated with local geology are useful primary data in the seismic microzonation of Bucharest City. They are used as 1D models to derive transfer functions and response spectra for the stack of sedimentary rocks in several parts of Bucharest area, leading to a better knowledge of the local site amplification and associated frequency spectra. In a recent study the H/V spectral ratio using Nakamuras method was applied on the seismic noise measurements in 22 sites in Bucharest City in order to derive the fundamental period associated with these sites. The values confirm the previous results, showing a dominant resonance in the period range of 1.25–1.75 s. The fundamental periods obtained with Nakamuras method are in good agreement with those computed on the basis of geological and geotechnical data in boreholes, which show an increase of the fundamental period in the Bucharest area from south to north, in the same direction as the increase of the thickness of the Quaternary deposits above the Fratesti layer which is considered the bedrock in the area.  相似文献   

9.
We present the frequency-dependent attenuation model for Fourier amplitude spectra of strong earthquake ground motion in Serbia from intermediate depth earthquakes in the Vrancea source zone in Romania. The development of this type of scaling is the essential first step toward developing the corresponding attenuation and scaling equations for pseudo relative velocity spectra (PSV), which are necessary for seismic macro- and microzoning in the territory of Serbia. Such scaling is necessary because the Vrancea source zone produces large earthquakes with shaking that attenuates differently from the local earthquakes in Serbia. Development of such a scaling model is associated with several difficulties, the principal one being the lack of recorded strong motion accelerograms at epicentral distances exceeding 300 km. To reduce uncertainties with such scaling, we require our preliminary scaling equations to be consistent with independent estimates of seismic moment, stress drop, and radiated wave energy. In the future, when the recorded strong motion data from Vrancea earthquakes increases several-fold of what it is today, it will become possible to perform this analysis again, thus leading to more reliable and permanent scaling estimates.  相似文献   

10.
The Vrancea subcrustal earthquakes of August 30,1986 and May 30,1990 are the two most recent seismic events that have occurred in Romania with moment magnitudes M W ≥ 6.9.The spectral analysis of the strong ground motions recorded in Bucharest reveals that despite small differences in magnitude between the 1986 and 1990 earthquakes,their frequency contents are very different,sometimes even opposing.The main focus of this study is to conduct a comparative analysis of the response spectra in terms of the bi-normalized response spectra(BNRS) proposed by Xu and Xie(2004 and 2007) for strong ground motions recorded in Bucharest during these two seismic events.The mean absolute acceleration and relative velocity response spectra for the two earthquakes are discussed and compared.Furthermore,the mean bi-normalized absolute acceleration and normalized relative velocity response spectra with respect to the control period T C are computed for the ground motions recorded in Bucharest in 1986 and 1990.The predominant period T P is also used in this study for the normalization of the spectral period axis.Subsequently,the methodology proposed by Martinez-Perreira and Bommer(1998) is applied in order to estimate the seismic intensity of the two events.The results are discussed and several conclusions regarding the possibility of using the bi-normalized response spectra(BNRS) are given.  相似文献   

11.
The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1–2 to 7–10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.  相似文献   

12.
The paper presents recent achievements in evaluations of site-dependent seismic hazard in Romania and the capital city of Bucharest caused by the Vrancea focal zone (SE-Carpathians). The zone is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depths 60–170 km. The database that was used for the hazard evaluation includes parameters of seismicity, ground-motion source scaling and attenuation models (Fourier amplitude spectra), and site-dependent spectral amplification functions. Ground-motion characteristics were evaluated on the basis of several hundred records from more than 120 small magnitude (M 3.5–5) earthquakes occurred in 1996–2001 and a few tens of acceleration records obtained during four large (M 7.4, 7.2, 6.9 and 6.3) earthquakes. The data provide a basis for probabilistic seismic hazard assessment in terms of peak ground acceleration, peak spectral acceleration and MSK intensity using Fourier amplitude spectra for various exceedance probabilities or average return periods. It has been shown that the influence of geological factors plays very important role in distribution of earthquake ground-motion parameters along the territory of Romania.  相似文献   

13.
The Vrancea seismogenic zone in Romania represents a peculiar source of seismic hazard, which is a major concern in Europe, especially to neighboring regions of Bulgaria, Serbia and Republic of Moldavia. Earthquakes in the Carpathian–Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 km occur. One of the cities most affected by earthquakes in Europe is Bucharest. Situated at 140–170 km distance from Vrancea epicenter zone, Bucharest encountered many damages due to high energy Vrancea intermediate-depth earthquakes; the March 4, 1977 event (Mw=7.2) produced the collapse of 36 buildings with 8–12 levels, while more than 150 old buildings were seriously damaged. A dedicated set of applications and a method to rapidly estimate magnitude in 4–5 s from detection of P wave in the epicenter were developed. They were tested on all recorded data. The magnitude error for 77.9% of total considered events is in the interval [−0.3, +0.3] magnitude units. This is acceptable taking into account that the magnitude is computed from only 3 stations in a 5 s time interval (1 s delay is caused by data packing). The ability to rapidly estimate the earthquake magnitude combined with powerful real-time software, as parts of an early warning system, allows us to send earthquake warning to Bucharest in real time, in about 5 s after detection in the epicenter. This allows 20–27 s warning time to automatically issue preventive actions at the warned facility.  相似文献   

14.
Bucharest, capital of Romania, is one of the most exposed big cities in Europe to seismic damage, due to the intermediate-depth earthquakes in the Vrancea region, to the vulnerable building stock and local soil conditions.This paper tries to answer very important questions related to the seismic risk at city scale that were not yet adequately answered. First, we analyze and highlight the bottlenecks of previous risk-related studies. Based on new researches in the hazard of Bucharest (recent microzonation map and ground-motion prediction equations, reprocessed real recorded data) and in vulnerability assessment (analytical methods, earthquake loss estimation software like SELENA and ELER, the recently implemented Near Real-Time System for Estimating the Seismic Damage in Romania) we provide an improved estimation of the number of buildings and population that could be affected, for different earthquake scenarios. A new method for enhancing the spatial resolution of the building stock data is used successfully.  相似文献   

15.
—?Site response was estimated at 19 sites in the Anchorage basin in south-central Alaska, using 15 local earthquakes recorded with good signal-to-noise ratio by a temporary weak motion network. The receiver-function-type horizontal-to-vertical spectral ratios (HVSR) were computed at 1–9 Hz frequency band and the resulting HVSR contour maps at 1, 5 and 9 Hz are presented here. The spatial site response distribution shows considerable variation from the foothills of the Chugach Mountains in the east to the western part of Anchorage. The site response increases by a factor of 3 and 3.5 at 1 and 5 Hz, respectively, from the area of older glacial deposits in the eastern part of the city to the area occupied by the Bootlegger Cove formation, particularly in the section adjoining Knik Arm. At 9 Hz, the variation of HVSR from the east to the west is smaller, approximately by a factor of 2. Moreover, the trend of the HVSR variation at 1 and 5 Hz shows good correlation with that of the soil class obtained from surface measurements of S-wave velocity in the 0–30?m depth range and available results on ground failure susceptibility of Anchorage.  相似文献   

16.
In order to understand and simulate site effects on strong ground motion records of recent earthquakes in Mexico City, it is fundamental to determine the in situ elastic and anelastic properties of the shallow stratigraphy of the basin. The main properties of interest are the shear wave velocities and Q-quality factors and their correlation with similar parameters in zones of the city. Despite population density and paved surfaces, it is feasible to gather shallow refraction data to obtain laterally homogeneous subsoil structures at some locations. We focused our analysis in the Texcoco Lake region of the northeastern Mexico City basin. This area consists of unconsolidated clay sediments, similar to those of the lake bed zone in Mexico City, where ground motion amplification and long duration disturbances are commonly observed. We recorded Rayleigh and Love waves using explosive and sledgehammer sources and 4.5 Hz vertical and horizontal geophones, respectively. Additionally, for the explosive source, we recorded three-component seismograms using 1 Hz seismometers. We obtained phase velocity dispersion curves from ray parameter-frequency domain analyses and inverted them for vertical distribution of S wave velocity. The initial model was obtained from a standard first-break refraction analysis. We also obtained an estimation of the QS shear wave quality factor for the uppermost stratigraphy. Results compare well with tilt and cone penetrometer resistance measurements at the same test site, emphasizing the importance of these studies for engineering purposes.  相似文献   

17.
This paper evaluates possible directional effects from strong ground motions recorded during the last four significant subcrustal earthquakes produced in the Vrancea seismic zone(Romania) in August 1986(M_w=7.1),May 1990(M_w=6.9 and 6.4) and October 2004(M_w=6.0).Several measures of the horizontal component of the ground motion given in the literature(Boore et al.,2006;Boore,2010) are computed and are related to the geometric mean of the as-recorded horizontal components.ANOVA method is applied in order to quantify the influence of the earthquake magnitude and of the soil class on some strong ground motion parameters(e.g.Arias intensity,PGV/PGA,or mean period T_M).The study of the directional effects is performed using the distribution of I_(JMA) and of the rotation angle corresponding to a measure of the horizontal component of the ground motion(RotD 100) and the results reveal a visible directional pattern for I_(JMA),while in the case of RotD100 the directional patterns are less visible.  相似文献   

18.
2008年汶川MS8.0地震中, 固定和流动地形影响台阵记录到大量主余震记录, 本文通过对其均方根加速度、 相对持时、 频谱等要素进行分析, 讨论了山体地形效应的特征及其影响因素. 对于自贡西山公园地形台阵各测点的分析结果显示: 该台阵山脚基岩位置地震动的均方根加速度和相对持时明显低于山体周边土层场地和山体基岩测点; 随着高程的增加, 山体基岩测点的均方根加速度逐渐变大, 相对持时则变化不大, 傅里叶谱形状也大体一致, 在2.0—5.0 Hz频段内有所放大; 山体周边土层场地和山体地形对于相同地震动输入中不同频段内地震动能量的放大水平不同, 从而导致二者的地表地震动强度产生显著差异, 且前者对地震动持时的增加更加显著.   相似文献   

19.
The paper presents results of studying the attenuation of ground accelerations from earthquakes of the Vrancea with magnitudes less that 6.0 at distance greater than 300 km in a narrow sector located northeast of the focal region, within the limits of which are located acting and planned nuclear power plants (NNPs). Attenuation of peak ground accelerations in individual sections along the Vrancea–IRIS OBN station path is approximated by individual functions. It is shown that for a rough estimation of the seismic effect of earthquakes from the Vrancea zone it is acceptable to use the empirical relationship obtained by F.F. Aptikaev. For a more accurate estimate, it needs to be modified by adding a constant, whose value depends on the specific conditions of the NPP sites. It is shown that the results of data analysis on moderate earthquakes can be extrapolated to an earthquake with the maximum possible magnitude for the Vrancea zone and used to estimate the maximum seismic effects at the sites of operating and planned NPPs.  相似文献   

20.
Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian M_s 6.5 earthquake and the Jinggu M_s6.6 earthquake occurred in Yunnan province in 2014. There is a question of why the two events with almost the same level of magnitude caused differences in earthquake damage. To understand the uniqueness of the phenomenon,this paper focuses on the characteristics of the ground motions and post-earthquake field investigation for the two events.Firstly, we present an overview of the residuals between the Ludian earthquake and the Jinggu earthquake based on the YW06 Ground Motion Prediction Equation(GMPE), and explain the unusual destructiveness of the strong ground motion. Then we analyze the ground motion recordings at selected typical station, based on the strong motion parameters: equivalent predominant frequency and Arias intensity. The result exhibits a good agreement with the Chinese seismic intensity scale. This study would be helpful to gain a better knowledge of the characteristics and variability of ground motions for M_S6 class earthquakes in China and to understand the implications to future earthquakes with similar focal mechanism and local condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号