首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Morphological, seismic and lithostratigraphic investigations of a moraine deposit at Bleik (the Bleik moraine), northern Andøya, show short-distance transported till overlying long-distance transported predominantly glaciofluvial ice-marginal deposits. Consolidated glaciomarine sediments from a core at present sea-level, c . 400 m distally to the moraine complex, contain 31 species of foraminifera, among which Cassidulina reniforme, Islandiella helenae and Trifarina fluens dominate, and fragments of the molluscs Mya truncata and Astarte sp. and the echinoid Strongylocentrotus sp. Amino acid analyses of the foraminifera Cibicides lobatulus and the mollusc Mya truncata indicate ages between 22,000 and 16,000 BP. Radiocarbon dating of fragments of Mya truncata from the upper part of the core gave an age of 17,940 ± 245 BP, while a dating of unidentified shell fragments from the lower part gave an infinite age (>40,000 BP). The sediment was probably disturbed by icebergs beyond the end moraine zone, and the radiocarbon and amino acid dating of Mya truncata therefore represent a maximum age for this process. This new evidence indicates two phases with a higher relative sea-level than at present at Bleik, c . 18,000 and >40,000 BP. The Bleik moraine probably represents the early Late Weichselian glacial maximum ( c . 22,000 BP), while the underlying deglaciation deposit and associated beach-ridge (Bruvollen) is of pre-Late Weichselian age. Moraine ridges 3–4 km to the south of Bleik probably indicate advances of local glaciers between 22,000 and 18,000 BP.  相似文献   

2.
BOREAS Vorren, K.-D. 1978 03 01: Late and Middle Weichselian stratigraphy of Andøya, north Norway, Boreas, Vol. 7, pp. 19–38. Oslo. ISSN 0300–9483.
Bio-stratigraphy and 14C datings from Lake Endletvatn, 69o 44'N and 19o05'E, approx. 35 m above sea level, suggest that the lacustrine sedimentation started about 18,000 B.P. The Middle Weichselian vegetation was probably a dry arctic, partly barren, grassland type with abundant Draba spp. and perhaps also Braya spp. Two climatic ameliorations of this chronal substage, named Endletvatn thermomers 1 and 2 (ET 1 and 2), have been recorded. During ET 2, the beginning of which has been dated at about 15,000 B.P., a humid climate prevailed, with a July temperature probably not deviating much from the present one. The colonization by low alpine and subalpine species probably started in the Bølling Chronozone. During the early Allerød Chronozone, protocratic conditions with grasses RumexlOxyria, Papaver and Sagina of. saginoides prevailed. During the middle of the Allerød, stable soil and continuous vegetation was established at sheltered places. At the transition to the Younger Dryas Chronozone a climate favouring Artemisia changed this vegetational development. The middle of the Younger Dryas was cool and humid, probably with an upper low alpine vegetation. The end of this chronozone was characterized by a vegetation of low alpine heaths with Empetrum and Dryas.
Diatom analysis (Foged 1978) suggests that there has been no direct marine influence in the basin. The marginal moraine stratigraphy, the marine limit and the climatic development are discussed.  相似文献   

3.
Up to four nested Neoglacial moraines occur in front of glaciers on Lyngshalvöya. Lichenometric measurements at 21 glaciers demonstrate that these represent five episodes of glacier expansion, one of which predated the Little Ice Age. Lichenometric, dendrochronological and historical evidence indicates that the oldest Little Ice Age moraines date to the mid-18th century, and the youngest to A.D. 1910-30. At nine small glaciers the A.D. 1910-30 moraine represents the Neoglacial maximum; only larger glaciers were more extensive in the 18th century. It is inferred that conditions for glacier growth were less favourable in the 18th century than in A.D. 1880–1910 because of low winter snowfall. Comparison of the relative magnitude of 18th- and 20th-century advances on Lyngshalvöya with those of southern Norway suggests that the diminished winter precipitation was due to the southerly location of the North Atlantic oceanic polar front in the 18th century, which resulted in a reduction in winter cyclonic activity in northern Scandinavia but in an increase in snowfall farther south.  相似文献   

4.
BOREAS Foged, N. 1978 03 01: Diatoms from the Middle and Late Weichselian and the Early Flandrian period on Andøya, north Norway. Boreas, Vol. 7, pp. 41–47. Oslo. ISSN 0300–9483.
From cores from a depth of 9.9 m up to 5.1 m below the present surface of a mire situated approx. 36 m above sea level on Andøya, north Norway, 47 samples were analysed for diatoms. Some 240 taxa were recorded, chiefly in Late Weichselian and Early Flandrian material. They were subdivided according to their halobion and pH relation. On the whole, the pH reaction of the environment was neutral, but it changed from faintly acid to faintly alkaline during the sedimentation of the Late Weichselian material.  相似文献   

5.
Shoreline displacement data from the Trondheimsfjord area have been collected and a synthesis of the Late Weichselian and Holocene relative uplift is presented. The isobase direction is N 30–35°E during the whole period. The gradients of the shorelines are 1.7? m/km at 11,800 years B.P., 1.3 m/km at 10,000 years B.P., gradually decreasing towards the present with a value of 0.2 m/km at 5,000 years B.P. Some irregularities in the shoreline gradient curve in the Late Weichselian and Preboreal chronozones may be ascribed to crustal readjustments by faults. An interpolation of the 9,500 years B.P. shoreline to the Ångermanland and Baltic area shows a relative uplift at 11,800 years B.P. of 400–450 m in the central area of glaciation. The island of Hitra was probably deglaciated at about 12,000 years B.P. and Ørlandet/Bjugn somewhat later. The Younger Dryas ice marginal deposits at Tautra have been deposited early in this chronozone, and deposits proximal to this at Hoklingen and Levanger were probably deposited in the late part of the same chronozone.  相似文献   

6.
BOREAS Fjellberg, A. 1978 03 01: Fragments of a Middle Weichselian fauna on Andøya, north Norway. Boreas. Vol. 7. p. 39. Oslo. ISSN 0300–9483.
Presence of the chironomid Corynocera ambigua Zett. and the carnivore Mustela erminea L. on Andøya about 15,000 B.P. is suggested. The oribatide mite Trichoribates cf. setiger (Träg.) has been recorded in 17–18,000 years old sediments on Andøya.  相似文献   

7.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Field research on Phippsøya, the largest island in the Sjuøyane archipelago, defines the course and timing of postglacial emergence, documents past-glacier movements, and reinterprets deglacial sedimentary sequences. Previously described tills were not identified in sections exposed along the northeast shore of Phippsøya, but instead sublittoral sediments with rock-fall concentrations derived from the adjacent slope. A glacio-isostatically higher sea level >40 ka deposited sublittoral sediment and is possibly correlative to a deglacial event in oxygen isotope stage 4 or 5 identified at other sites on Svalbard. The postglacial marine limit is 22 ± 1 m aht and occurs as an escarpment or washing limit into a stony drift. This drift contains granite and quartzite erratics from Nordaustlandet that indicate coverage by a northward flowing ice sheet during the Late Weichselian. Datable material on the raised-beach sequence was rare and a 14C age of c. 9.2 ka on an articulated Balanus balanus from 10 m aht provides a minimum constraining age on the marine limit. A mild transgression occurred by 6.2 ka, with sea level falling close to present levels by c. 5.0 ka. The zone of zero emergence (hinge line) lies 10 to 20 km north of Sjuøyane and is approximately coincident with the last glacial maximum limit on the continental shelf. There is an approximately 75 to 100 km offset between observed and modelled zone of zero emergence, indicating a need to refine earth rheology-based ice-sheet models.  相似文献   

10.
Lake and peat deposits from the Timan Ridge, Arctic Russia, were pollen analysed, reconstructing the vegetation history and paleoenvironment since the Last Glacial Maximum (LGM) 20–18,000 years ago. The sites studied are located inside the margins of a large paleolake of about 20 km2, by us named Lake Timan. This lake developed in the Late Weichselian, more than 30,000 years after the deglaciation of this region, and was formed due to increased precipitation and warmer summers that accelerated the melting of stagnant ice within its catchment. The lake was drained during the early Holocene when the outlet rivers eroded the spillways. A new generation of much smaller lakes formed during the Holocene when the last remnants of buried glacier ice melted away causing the exposed floor of Lake Timan to subside. Since deglaciation, the following regional vegetation development has been recorded: (1) During the initial stage of Lake Timan, the dominant vegetation was discontinuous steppe/tundra, with patches of snow bed vegetation. (2) A dwarf-shrub tundra established during the Late Weichselian interstadial (Allerød), probably reflecting warmer and moister conditions. (3) The Younger Dryas cooling is recognised by a reversal to steppe/tundra and snowbeds on unstable mineral-soils, and higher palynological richness. (4) Soon after the transition into the Holocene, a birch-forest established on the Timan Ridge. (5) A cooling starting around 8200 cal.years BP initiated the deforestation of the exposed hills. In the most protected sites, birch trees persisted until later than 4000 years ago, reflecting a gradual development into the present treeless dwarf-shrub tundra.  相似文献   

11.
From the Sellevollmyra bog at Andøya, northern Norway, a 440‐cm long peat core covering the last c. 7000 calendar years was examined for humification, loss‐on‐ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle‐match of 35 14C dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified (periods of the most fundamental changes in italics): 6410–6380, 6230–6050, 5730–5640, 5470–5430, 5340–5310, 5270–5100, 4790–4710, 4890–4820, 4380–4320, 4220–4120, 4000–3810, 3610–3580, 3370–3340 (regionally 2850–2750; in Sellevollmyra a hiatus between 2960–2520), 2330–2220, 1950, 1530–1450, 1150–840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla‐4 tephra layer started some decades before the eruption event.  相似文献   

12.
Relative a absolute (pollen concentration) diagrams are presented from Bergebyvatnet, Holmfjellvatnet and Stjernevatnet on Varanger peninsula. All three sites are outside the younger Dryas (Main substage) moraines and the pollen assemblage zones are correlated biostratigraphically with chronozones from Allerød to Middle Flandrian. Radiocarbon dates from Bergebyvatnet appear to have been affected by hard water error, but dates from the other two sites agree will with the inferred chronostratigraphy. Pollen diagrams from Varanger peninsula suggest broadly similar vegetational histories, the longest record beign that from Østcrvatnet (H. C. Prentice 1981, Boreas , Vol. 10, pp. 53–70). Open tundra-like conditions prevailed throughout the Late Weichselian, with Salix dominance interrupted by unstable vegetation with abundant Artemisia during the Older and Younger Dryas zones. Major vegetational and floristic changes began just before 10,000 B.P., the rapid scquence from herb pollen flora was rich and varied, including a mixture of floristic clements similar to that found during the Late Weichselian in southern Scandinavia. Basiphilous herbs were particularly abundant at Østervatnet and Bergebyvtnet. Betula nand and species of Ericales became locallydominant just before the full establishment of B. pubescens , which rapidly spread beyond its present limit. Later immigrants included Alnus incana; Juniperus communis ; and Pinus sylvestris , which reached the south western part.  相似文献   

13.
A relative and absolute (pollen concentration) diagram is presented from Østervatnet, southern Varanger peninsula, north of the Main sub-stage (Tromsø-Lyngen) moraines. The pollen assemblage zones are correlated biostratigraphically with chronozones from Bølling to Middle Flandrian. Sediment analyses (loss on ignition and particle size) and implied sedimentation rates support this chronology. The three 14 C-dates are considered too old by 1000–2000 years because of hard water error. Redeposited Tertiary palynomorphs were encountered in the lower, mineral sediments; their source is unknown. Pollen spectra and pollen deposition rates indicate tundra throughout the Late Weichselian, with Artemisia -grass steppe predominant during Older and Younger Dryas. Rapid vegetational changes began at around 10,000 B.P., followed by successive immigration and establishment of tree birch (with accompanying floristic change) and Juniperus. Ericales were conspicuously unimportant and the pollen diagram records a herb flora rich in basiphilous species  相似文献   

14.
Lithostratigraphic and palynological analysis of two cores recovered from the ‘Grand Lac’ (New Caledonia), combined with 35 14C AMS dates, yields a paleoenvironmental record spanning the last 2000 yr. The lithology is represented mainly by clayey or laminated layers. A catastrophic event, which is marked by very coarse deposits, occurred probably between ca 1070-960 cal yr B.P. and possibly is associated with an unusually severe La Niña event. Before and after this event, a similar combination of the two main sediment types is recorded. The repeated alternation of laminated and clayey layers is interpreted as the response to local hydrologic forcing, which may reflect a shift from relatively wet to relatively drier conditions, respectively. Variable amount of micro-charcoal is detected all along the profile. Without additional evidence, notwithstanding the initial local human settlement documented since ca 2900 14C yr B.P., micro-charcoal occurrence and variability cannot be linked directly to an anthropogenic origin. No distinct palynological zonations in relation to the lithology are observed, and the vegetation changes may only represent minor transitions across environmental limits.  相似文献   

15.
The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (∼3300–3000 cal yr BP, ∼2600–1600 cal yr BP, and ∼900–600 cal yr BP), and three weakened ASM intervals (∼4000–3300 cal yr BP, ∼3000–2600 cal yr BP, and ∼1600–900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ∼1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic–atmospheric circulation probably have influenced the late Holocene climate variability in the study region.  相似文献   

16.
Pollen analysis from Sandvikvatn has elucidated the local Late Weichselian vegetational and climatic history since deglaciation about 14,000 B.P. The pleniglacial period, the first of three climatic main periods and ending c. 13,600 B.P., is an Artemisia -dominated pioneer vegetation on disturbed mineral soils. The Late Weichselian Interstadial (13,600-11,000 B.P.) comprises a Salix -shrub consolidation phase and, from 12,900 B.P., a birch-forest optimum phase. In the Younger Dryas Stadial (11,000–10,100 B.P.) the Artemisia -dominated pioneer vegetation returns. Three climatic oscillations are demonstrated at intervals of about 500 years within the Interstadial. The oldest two, about 12,500 and 12,000 B.P., could both have been connected with the 'Older Dryas'. Cold winters and strong winds, causing soil erosion and drought, are suggested as important factors during the climatic periods unfavourable to woody vegetation. In the pleniglacial and Younger Dryas periods the winds are assumed to be katabatic. During the whole Late Weichselian southern species dominate locally. A northwards spread is demonstrated for the majority of the local late-glacial taxa, including the endemic Primula scandinavica and also Papaver radicatum and Aconitum , both previously discussed as part of the hypothesis of Weichselian ice-free refugia.  相似文献   

17.
Palynological results from Liastemmen indicate a tripartite division of the Late Weichselian. In the pleniglacial period, from deglaciation ca. 14000 BP to ca. 13000 BP, Artemisia-dominated pioneer vegetation on disturbed, mineral-soil was strongly influenced by cold winters and katabatic winds. The Late Weichselian Interstadial (ca. 13000 BP-ca. 11000 BP) comprises a Salix-shrub consolidation phase, and from ca. 12700 BP a tree-birch phase. In the last 500 years of this period July and January means are estimated to about 16°C and between ?2°C and ?6°C, respectively. In the Younger Dryas Stadial (ca. 11000 BP-ca. 10200 BP) Artemisia-dominated vegetation returns. Three brief climatic deteriorations (ca. 12 250 BP, 11 700 BP, and 11 300 BP), unfavourable to woody vegetation on humus soils, are demonstrated within the interstadial. Critical climatic factors include cool winters and strong winds, exposing vegetation and soil to frost, drought, and erosion. The oldest and strongest oscillation, probably involving local deforestation, is correlated with the ‘Older Dryas deterioration’. Boreal-circumpolar, eurasiatic, and arctic-alpine plants dominated the late-glacial flora. For the majority of the late-glacial taxa a northward migration is demonstrated. This may also apply for Papaver radicatum, Pinguicula alpina, and Primula scandinavica, all with bicentric distributions in Norway today.  相似文献   

18.
19.
Olahola is a wavecut cave positioned well above the postglacial marine limit. The sediment sequence in the cave can be litho- and magnetostratigraphically correlated with the sequence in the Skjonghelleren cave, 36 km northeast of this locality. Three boulder formations in Olahola represent three ice-free periods (including the Holocene) and two formations of laminated clay represent periods of ice-cover. Paleomagnetic excursions in the laminated clays have been correlated with the Lake Mungo/Mono Lake excursion (28 ka), and with the Laschamp excursion (43 ka), but the resolution of these events is much better in the caves than anywhere else. The paleomagnetic records from Skjonghelleren and Olahola suggest that during the Laschamp excursion at least 0.75–1 m of sediment accumulated in Skjonghelleren before sedimentation started in Olahola, indicating also an earlier ice coverage at Skjonghelleren.  相似文献   

20.
The Quaternary sedimentary succession in Vendsyssel, northern Denmark, contains a unique, high‐resolution record of the last interglacial and glacial periods. There is still much debate, however, about the timing and ice extent in this southwestern part of the Scandinavian Ice Sheet, particularly during the Middle Weichselian. In this study, a detailed lithostratigraphical subdivision is established for the Late Saalian to Middle Weichselian Skærumhede Group on the basis of numerous, up to 250 m deep, boreholes in Vendsyssel. The sediments mainly consist of marine clays, glaciolacustrine sediments and tills, and the total thickness of the Skærumhede Group is up to 140 m. Marine intervals have been used as stratigraphical marker units to separate the formations indicative of ice‐sheet activity in Vendsyssel, and the timing of the events has been constrained by a large number of optically stimulated luminescence (OSL) and radiocarbon ages. The Skærumhede Group is subdivided into seven formations and two members, reflecting shifts between marine and terrestrial sedimentation caused by fluctuations of the Scandinavian Ice Sheet and changes in sea level. The lowermost Skærumhede Till Formation was deposited directly on top of the bedrock during the Warthe advance c. 160–140 kyr BP. Above, there are fine‐grained marine sediments, subdivided into the Lower, Middle and Upper Skærumhede Clay Formations. The marine formations are separated by the Brønderslev Formation related to the Sundsøre ice advance from the north c. 65–60 kyr BP, and the Åsted Formation, deposited during the Ristinge advance from an east–southeastern direction c. 55–50 kyr BP. The uppermost formation in the group is the Lønstrup Klint Formation, which is an upwards‐coarsening sequence of mainly glaciolacustrine sediments deposited prior to the Kattegat advance c. 30–29 kyr BP. The new evidence from Vendsyssel has shown that the Skærumhede Group covers a large area, and that it can be used as a regional stratigraphical marker horizon. Furthermore, it contributes to a better understanding of the timing and extent of glacial events during the Late Saalian to Middle Weichselian in southwest Scandinavia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号