首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep water originating in the North Atlantic is transported across the Antarctic Circumpolar Current by eddies and, after circumnavigating of the Antarctic, enters the Weddell Gyre south of Africa. As it does so, it rises up from mid-depth towards the surface. The separate temperature and salinity maxima, the Upper and Lower Circumpolar Deep Waters, converge to form the Warm Deep Water. Cores of this water mass on the southern flank of the eastern Weddell Gyre show a change in characteristic as they flow westward in the Lazarev Sea. Observations have been made along four meridional sections at 3° E, 0°, 3° W and 6° W between 60 and 70° S during the Polarstern Cruise ANTXXIII/2 in 2005/2006. These show that a heterogeneous series of warm and salty cores entering the region from the east both north and south of Maud Rise (65° S, 3° W) gradually merge and become more homogeneous towards the west. The gradual reduction in the variance of potential temperature on isopycnals is indicative of isopycnic mixing processes. A multiple regression technique allows diagnosis of the eddy diffusivities and, thus, the relative importance of isopycnic and diapycnic mixing. The method shows that the isopycnic diffusivity lies in the range 70–140 m2 s−1 and the diapycnic diffusivity reaches about 3 × 10−6 m2 s−1. Scale analysis suggests that isopycnic diffusion dominates over diapycnic diffusion in the erosion of the Warm Deep Water cores.  相似文献   

2.
The Muzaffarabad region in western Himalaya, the site of the devastating earthquake of 8 October 2005 of magnitude 7.6, occupies a unique tectonic position, encompassed by the Himalayan arc to the east and the complex thrust zones of Pamir and Hindukush in the north and northwest respectively. Further, the region is entangled in a peculiar overturned syntaxial bend of the Main Central Thrust (MCT), north of Main Boundary Thrust (MBT). A study of focal mechanisms and stress inversion in each of these regions indicates varied stress regimes demonstrating their distinct tectonic character. While shallow plane thrust faulting with low dip angles is generally witnessed along the Himalayan arc, a transition to steep fault plane dips up to 45° is seen in the Muzaffarabad region on the western side. It is inferred that the stress field in Muzaffarabad region is not a mere extension of that in the Himalayan arc but is controlled by the complex interplay of the surrounding diverse tectonic structural units comprising the Himalaya, Hindukush and Pamir, rather than merely the tectonic forces of India–Eurasia collision.  相似文献   

3.
In the last decade, Chinese geologists have made a remarkable progress in studies on thelithology, structural style, metamorphic evolution, geochemistry and geochronology of the North China Craton, including recognition of numerous tonalitic-trondhjemitic…  相似文献   

4.
The Eastern Pontide Orogenic Belt is one of the most complex geodynamic settings within the Alpine belt. Subduction polarity, which is responsible for the formation of the Eastern Pontide Magmatic Arc, is still under debate because of limited geological, geophysical and geochemical data. This orogenic belt is mainly divided into three subzones depending on lithological characteristics and facies changes as in Northern, Southern and Axial Zones from North to South. These zones are separated from each other by near-vertical faults that display the block-faulting tectonic style of this belt. In this study, the tectonic and crustal structure of the Eastern Pontides, which as yet have not been prospected by using geophysical data, has been investigated with potential field data. The horizontal gradient map obtained from gravity data shows a number of steep and gentle lineaments. It seems that these lineaments E-W, NE and NW-trending correspond to major structural zones of continental crust. Additionally, The Moho depth and Curie point depth variation maps of the Eastern Pontide Orogenic Belt have been computed with the power spectral method of the radial wavenumber carried out by using the fast Fourier transform method. As a result of this method, we estimated that the depths of the Moho and Curie point varied between 29.0 ± 1.2–47.2 ± 1.9 km and 14.3 ± 0.7–27.9 ± 1.4 km, respectively. Our findings indicate that the Moho depth generally increases from north to south in the region. However, the Curie point depth level within the crust has an undulating surface, not a horizontal one.  相似文献   

5.
P. FRYER    H. SUJIMOTO    M. SEKINE    L. E. JOHNSON    J. KASAHARA    H. MASUDA    T. GAMO    T. ISHII    M. ARIYOSHI  & K. FUJIOKA 《Island Arc》1998,7(3):596-607
Until recently it was thought that the volcanoes of the Mariana island arc of the western Pacific terminated at Tracey Seamount at ∼ 14°N immediately west of Guam. Sea floor mapping in 1995 shows a series of large volcanic seamounts stretching westward for nearly 300 km beyond that point. The morphology, spacing, and composition of those sampled are consistent with their having formed as a consequence of eruption of suprasubduction zone arc magmas. The relationships of the volcanoes to the tectonic processes of subduction of the Pacific plate beneath the southern portion of the Mariana convergent plate margin are becoming increasingly clear as new bathymetry and geochemical data are amassed. The volcanoes along this trend that lie closest to Guam are forming where the center of active extension in the back-arc basin intersects the line of arc volcanoes. They develop well-defined rifts that are parallel to rift structures along the extension center, whereas volcanoes of the spreading axis to the north are smaller than the frontal arc volcanoes and tend to form along lineaments. Compositions of lavas from these intersection volcanoes bear some similarities to back-arc basin basalt, but are on the whole well within the range of compositions for Mariana island arc lavas. The Pacific plate subducts nearly orthogonal to the strike of the trench along the southern part of the Mariana system and the distance to the arc line from the trench axis is only ∼ 150 km. Several deep fault-controlled canyons on the inner slope of the southern Mariana trench indicate an enhanced tectonic extension of this plate margin. The presence of these active arc volcanoes and the existence of the orthogonal normal faulting along the southern Mariana forearc supports a model of radial extension for formation of the Mariana Trough, a model previously dismissed because of the lack of evidence of these two major geological features.  相似文献   

6.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

7.
Seismotectonic regionalization of the Kamchatka subduction zone was carried out by retrospective analysis of the temporal sequence and locations of earthquake occurrence and an examination of relationships between the earthquake hypocenters and morphostructures in the continental slope of eastern Kamchatka. Ten segments separated with earthquake-generating strike-slip faults have been identified in the overthrusting (overhanging) margin of the Sea-of-Okhotsk plate in the zone where the Pacific and the Sea-of-Okhotsk plates interact orthogonally. Two to three earthquake-generating thrust blocks have been identified within these segments. This type of subduction is consistent with the keyboard-block model of L.I. Lobkovskii and B.V. Baranov. We put forward a model involving segmentation and generation of thrust blocks due to nonuniform coupling between the subducted Pacific plate and the overhanging Sea-of-Okhotsk plate. According to this model, both segmentation and the formation of thrust blocks are caused by nonuniform plate coupling due to unevenness in the relief of the plunging plate. The thrusts have relief expression as underwater highs and terraces, which indicate that a tsunami-generating earthquake can occur at this location. The highest rate of occurrence for magnitude 7 or greater earthquakes is found at the sharp bend of the Pacific plate, where the subduction angle is 10°–12° instead of 50°–51°, corresponding to a frontal (tectonic) arc, which can be traced by a positive free-air gravity anomaly and by an isostatic anomaly.  相似文献   

8.
Fault plane solutions for earthquakes in the central Hellenic arc are analysed to determine the deformation and stress regimes in the Hellenic subduction zone in the vicinity of Crete. Fault mechanisms for earthquakes recorded by various networks or contained in global catalogues are collected. In addition, 34 fault plane solutions are determined for events recorded by our own local temporary network on central Crete in 2000–2001. The entire data set of 264 source mechanisms is examined for types of faulting and spatial clustering of mechanisms. Eight regions with significantly varying characteristic types of faulting are identified of which the upper (Aegean) plate includes four. Three regions contain interplate seismicity along the Hellenic arc from west to east and all events below are identified to occur within the subducting African lithosphere. We perform stress tensor inversion to each of the subsets in order to determine the stress field. Results indicate a uniform N-NNE direction of relative plate motion between the Ionian Sea and Rhodes resulting in orthogonal convergence in the western forearc and oblique (40–50) subduction in the eastern forearc. There, the plate boundary migrates towards the SE resulting in left-lateral strike-slip faulting that extends to onshore Eastern Crete. N110E trending normal faulting in the Aegean plate at this part is in accordance with this model. Along-arc extension is observed on Western Crete. Fault plane solutions for earthquakes within the dipping African lithosphere indicate that slab pull is the dominant force within the subduction process and responsible for the roll-back of the Hellenic subduction zone.  相似文献   

9.
10.
Making use of 75 earthquake data of China mainland and adjacent areas recorded by long period seismometers of 27 stations of China and 3 stations of WWSSN and processed by match-filtering frequency-time analysis technique and grid dispersion inversion, the authors obtain pure-path dispersion curves of Rayleigh surface wave in 147 grids in this paper. The distribution characteristics of group velocity are as follows:the China mainland and its adjacent sea areas are divided into two parts of east and west by South-North belt and are separated in blocks of south and north with boundaries of 44°–44°N,28°N (in the west part) and 28°–32°N (in the east part), the first and third boundaries may extend eastward into sea regions, in the west side of island arc and continental shelves, appears belt-form distribution of group velocity striping NE direction. These distribution characteristics correspond to zonation of tectonic structure. In addition, the results also indicate that the differences of group velocity dispersion curves exist between tectonic elements of next order. It is revealable for the differences of group velocity among different tectonic elements until periodT = 113s (corresponding depth is about 170km). The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 32–38, 1993.  相似文献   

11.
This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala–El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~ 10–15mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~ 5–10mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide’ a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors.  相似文献   

12.
The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, including the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows: The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sinistrally and obliquely to North China Block during the collision of North China Block and South China Block. Supported by National Natural Science Foundation of China (Grant Nos. 40372097 and 40772131)  相似文献   

13.
Summary The results of temperature measurements in six boreholes, drilled near the west shores of the Lake Nasser in the Aswan region in the Nubian Desert, are reported. Temperature-depth profiles, complemented by thermal conductivity determinations of surface rock samples, were used to calculate the existing range of heat flow density in the region as 40 ÷ 60 mWm−2, which is consistent with the values from the adjacent areas, reported in the literature. The extrapolated mean annual ground surface temperatures amount, on the average, to 30°C, which is 3 K higher than the mean annual air temperature in the region.  相似文献   

14.
The Upper Cenozoic Magmatic Arc in northern New Zealand was initiated when the Indian-Pacific plate boundary first spread through the North Island approximately 20 m.y. ago. Six geographically separated magmatic arcs are recognized in succession. The first (20-15 m.y.) was sited over a basement depression; lavas were basic to intermediate and largely submarine; mineralization was minor. Subsequent arcs were sited over basement horst and characterized by sub-aerial intermediate to acid magmas. After prolonged andesitic/dacitic activity (18-6 m.y.) with minor mineralization, prolific rhyolite/ignimbrite eruption began at about 6 m.y., with abundant mineralization. Behind-arc activity produced localized basalt fields in the north, and geographically restricted high-potash andesites in the south.The first four arcs in the series are aligned at about 70° to the active Tonga-Kermadec-Taupo arc. The migration and rotation of the older New Zealand arcs are ascribed to four processes taking place at the plate boundary. These are: (1) anti-clockwise bending of the crust of western North Island, obliquely to the movement of the underlying lithosphere of the Indian plate, beginning at about 3 m.y., accompanying (2) dextral transcurrent displacement of 230 km with respect to eastern North Island; taking place mostly from 3 to 0 m.y.; (3) steepening of the Benioff zone from an initial 18° dip at 20 m.y. to the present 55° to 60°; and (4) fracturing of the west-dipping lithospheric slab to give two parallel, low-potash andesitic arcs between 18 and 15 m.y.Eastern North Island is deduced to have been “floating” while Pacific plate lithosphere passed beneath it throughout the Upper Cenozoic; accordingly it is designated the Hawkes Bay Crustal Microplate.There is good agreement between major tectonic events in the South Pacific deduced by Molnar et al. from magnetic anomaly studies and major tectonic events on land. A tentative history of the Southwest Pacific is proposed for the last 40 m.y.  相似文献   

15.
受新生代太平洋板块弧后扩张剧烈活动的地缘特性影响,冲绳海槽构造特征复杂,南、中、北段在热液活动、断裂性质、火成岩特性、扩张时代等方面存在显著不同,因此认识该区各段构造活动性对查清其复杂地质特征具有重要意义.本文依据前人通过磁异常反演得到的居里面深度资料,利用热模拟的方法,对冲绳海槽各段深、浅构造活动性进行了探讨.模拟结果表明,南段软流层构造活动强度约为中、北段的6倍,而岩石圈浅层构造活动却相对较弱.该结论与前人所得到的地质地球物理资料相符,主要表现为:相对于中、北段,南段在海槽总体演化历程上裂陷较深;海底火成岩岩浆源区较深,结晶分异程度较弱,同化混染程度较强;切穿沉积基底的大型断裂较为发育,而沉积层内部的小型断裂分布相对稀疏;沉积层岩浆侵入活动较弱,海底所呈现出的热液活动区数量较少;现代地震活动较多,震源深度较大.根据模拟结果与实际资料的对比分析我们可以推测:(1)冲绳海槽北段可能还有一些热液区没有被探测到,也可能在历史演化进程中失去活力,或者被第四系沉积物覆盖;(2)南段存在孕育更多热液活动区的潜力.  相似文献   

16.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes.  相似文献   

17.
Temperature data from deep petroleum exploration wells and thermal conductivity estimates based on net rock analysis data have been used to make terrestrial heat flow estimates along two profiles across the sedimentary strata of the Mackenzie Delta, northern Yukon, and offshore Beaufort Sea regions.Both profiles exhibit low heat flow values that range from 34 mWm–2 to 58 mWm–2, and little change occurs over large distances in the continental part of the area. Low heat flow values (<40 mWm–2) occur in the Beaufort-Mackenzie Basin and Rapid Depression, both of which are areas of thick successions of Cretacecus and Tertiary clastic sedimentary strata. High heat flow values of almost 80 mWm–2 occur to the south in the Taiga Nahoni Foldbelt and values as high as 60 mWm–2 are indicated along the Aklavik Arch Complex, northeast of Aklavik.The regional variations of effective thermal conductivity are insufficient to account for the heat flow variations along the profiles, and so these may indicate deep radiogenic or other heat sources.  相似文献   

18.
扬子板块东北缘中元古代的大地构造划分   总被引:1,自引:0,他引:1  
扬子板块东北缘存在四条主要的中元古代变质带,自南向北依次为江南变质带、沿江变质带、云台一张八岭变质带和连云港一泗阳变质带。它们分别为中元古代的古弧后盆地、火山岛弧、裂谷及弧前盆地,扬子板块东北缘中元古代为活动大陆边缘构造体系。苏(北)胶(南)变质造山带应解体,其中一部分属扬子大陆边缘体系。  相似文献   

19.
Twenty broadband seismographs were deployed along Hongyuan, Sichuan to Wuwei, Gansu. 81 teleseismic events were recorded in one year. We computed receiver functions from teleseismic waveform data and obtained S wave velocity structure beneath each station along the profile by using receiver function inversion method. The results revealed that the crustal structure is very complex and crustal average S wave velocity is to be on the low side. Low velocity structure generally exists in the depth range of 10~40 km in the crust between Aba arc fault and northern edge fault of Qinling earth's axis and it is a tectonic feature of complex geological process such as ancient A'nyemaqen Tethys ocean from closing and side colliding to subducted plate exhumed or thrust rock slice lifted. The Moho is about 50 km depth along the profile and is slightly deeper in the south than in the north.  相似文献   

20.
A present-day tectonic stress map for eastern Asia region   总被引:15,自引:1,他引:15  
Introduction Tectonically the eastern Asia refers to the region bounded by the following three active tec-tonic zones: in the east the western Pacific subduction zone, including Japan trench, Ryukyu trench and Philippine trench; in the southwest the Himalaya continental collision zone and the Burma-arc-Java-trench subduction zone; in the northwest the Tianshan-Baikal continental defor-mation zone (Figure 6). In the world the eastern Asia is one of the regions with the strongest pre-sent-da…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号