首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major-element composition, mineral composition and grain-size distribution have been studied for Quaternary aeolian sediments from the Taklimakan Desert, north-western China, together with the variation of chemical and mineralogical compositions of different grain-size fractions. Aeolian sediments from the Taklimakan Desert have higher ratios of feldspar/quartz and calcite/quartz, finer grain size, poorer roundness of quartz and feldspar grains and lower abundances of frosted quartz, than found in aeolian sediments from other deserts such as the Saudi Arabian Desert. In spite of these immature mineralogical and sedimentological features, the aeolian sediments from the Taklimakan Desert show low regional variations in major-element and mineral compositions and are homogenized. These observations confirm that two processes, glacial activity within surrounding mountains and aeolian activity at the Tarim Basin, are important in the homogenization of the Taklimakan Desert sands. Taklimakan Desert sediments are constantly and effectively supplied from basement rocks in the surrounding mountains by glacial erosion. The supplied sediments are further homogenized by aeolian activity in the desert and are partly blown away, serving as the source of Chinese aeolian loess. Compositional differences are observed between loess (mainly 10–40 μm particles) and the <45 μm fraction of the Taklimakan Desert sediments, as well as between loess and whole rock of the Taklimakan Desert sediments. These observations provide constraints for precise modelling of loess formation, and for assessment of the chemical composition of the upper continental crust based on the chemical composition of aeolian loess.  相似文献   

2.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   

3.
Re-Os analyses were performed on suspended loads and coarser grained bank sediments of the Brahmaputra River system. Re and Os concentrations of these sediments vary from 7 to 1154 ppt and from 3 to 173 ppt, respectively. 187Os/188Os ratios range from 0.178 to 6.8, and thus vary from nearly mantle to very radiogenic crustal values. Nevertheless, most of the sediments have 187Os/188Os ratios less than 1.5, and nearly all of the samples of the Brahmaputra main channel have ratios less than 1.2. Thus, as previously suggested, the Brahmaputra is much less radiogenic than the Ganga. The Siang River, the northern extension of the Brahmaputra, is quite radiogenic in Os despite receiving sediments from the Tsangpo River, which flows along a suture zone with ultramafic outcrops. The Brahmaputra main channel has a fairly constant 187Os/188Os ratio even though its tributaries contribute sediments with very heterogeneous Os isotopic compositions. These data, along with the corresponding Nd isotopic compositions, suggest that about 60-90% of the sediment in the Brahmaputra system is derived from Himalayan formations (Higher Himalaya and Lesser Himalaya) whereas 10-40% comes from ophiolite-bearing sequences, perhaps eastern equivalents of those of the Transhimalayan Plutonic Belt. Os data also confirm previously published Sr and Nd results, indicating that about half of the sediments delivered to the Brahmaputra are supplied by the Siang River, while the Himalayan and the eastern tributaries account for 40 and 10%, respectively.The lower 187Os/188Os of the Brahmaputra River compared to that of the Ganga is due to two factors. One is the more limited presence of the Lesser Himalaya and hence the lower black shale content of the eastern Himalaya. The other is the non-radiogenic Os supplied by the eastern and southern tributaries, reflecting the presence of mantle-derived lithologies in this region. Despite the lower sediment supply from these tributaries, they contribute greatly to the Os budget of the Brahmaputra River. This study indicates that the Brahmaputra River has little effect on the present-day seawater Os budget. However, reconsideration of this budget suggests that the Ganga, which provides the most radiogenic Os of major rivers studied to date, may have significant impact on the marine Os isotopic composition. The Indo-Asian collision cannot be excluded as an important cause of the increase in the marine 187Os/188Os over the past 16 million years until the contributions of all of the rivers draining the Himalayan Tibetan Plateau are known.  相似文献   

4.
Chromium ore was treated to produce ferrochromium from 1979 until 2000 in a smelter in Burrel, 35 km NE of Tirana (Albania). As a consequence, large amounts of solid waste, i.e. slags (about 9.106 m3) have been disposed next to the smelter, disfiguring the landscape. In an attempt to define contaminated sites, heavy metal content of the different sampling media have been compared with respective background samples.In the study area, the determination of background values in soil samples is complicated due to the different geological substrates. Cr and Ni background concentrations in serpentinite-derived soils, west of the smelting plant, are markedly higher than in the Pliocene gravel/sandy soils, where the smelter is situated (Cr 2147 and 193 mg/kg, respectively; Ni 2356 and 264 mg/kg). These values are clearly lower than those encountered around the smelter. Average total Cr and Ni concentrations in soils around the smelter are 3117 and 1243 mg/kg, respectively. The highest concentrations of Cr (up to 2.3 wt.%), were recorded in samples taken near the smelting compartment within the industrial plant and next to the slags clearly indicating that the smelter forms a point source of Cr contamination. The Cr / Fe ratio is the best indicator to differentiate non-polluted (Cr / Fe Serpentinite soil: 130–390; Pliocene soils: < 130) from polluted areas (> 390 smelting nearby of the slags).Cr and Ni values for local backgrounds in stream and overbank sediments were taken in the Mat river 6 km upstream and to the east of the smelter (268 and 430 mg/kg for Cr, and 306 and 604 mg/kg for Ni, respectively). Equivalent sediments taken from the Zalli i Germanit river, which drains the smelter area are respectively 816 and 1126 mg/kg for Cr and 1115 and 1185 mg/kg for Ni.Dust samples, taken from the lofts of houses up to 2 km from the smelter, display high concentrations of Cr, Ni and Zn (average contents of 2899, 436 and 902 mg/kg, respectively). The later concentrations in the dust samples have been confirmed by mineralogical analysis where Cr-bearing mineral phases such as ferrochromium and chromium oxides, clearly relate to the activity of the smelter. Consequently, atmospheric deposition of dust particles forms a serious problem and can also be responsible for the elevated contents encountered in soil samples around the smelter.All these data show that the degree of contamination caused by industrial activity of the Burrel Cr-smelter is severe, although no Cr(VI) was detected in soil water extractions nor in the surface or groundwater where concentrations were < 0.01 mg/kg.  相似文献   

5.
Isotopic characteristics of river sediments on the Tibetan Plateau   总被引:1,自引:0,他引:1  
We systematically collected 40 modern clastic sediment samples from rivers in different tectonic units of the Tibetan Plateau and measured their Sr–Nd isotopic compositions. The isotopic characteristics provide insight into the controversial paleo-tectonic affinity of terranes of the Tibetan Plateau and the provenance of Songpan–Ganzi flysch complex. The Qilian Terrane and Himalaya Terrane have more negative εNd(0) values (from ? 14.3 to ? 11.8 and from ? 20.64 to ? 13.26, respectively) and high 87Sr/86Sr values (from 0.719674 to 0.738818 and from 0.721020 to 0.824959, respectively), reflecting old and mature continental crust origin of these two terranes. The southern Lhasa Terrane is more radiogenic in εNd(0) values (from ? 8.82 to ? 3.8) and low in 87Sr/86Sr values (from 0.711504 to 0.719489), implying the combined impact of the Neo-Tethys mantle and Himalaya old continental crust. Sr–Nd isotopic compositions of the Qilian Terrane are similar to those in the Yangtze Craton, indicating that the Qilian Terrane was probably separated from the Yangtze Craton. Sr–Nd isotopic characteristics of the Songpan–Ganzi Terrane are similar to the Yangtze Craton and are remarkably different to those in the North China Craton, eastern Kunlun–Qaidam and the central Qiangtang metamorphic belt, implying that the widely distributed flysch complex of the Songpan–Ganzi Terrane was sourced from the Yangtze Craton.  相似文献   

6.
In developing countries, large amounts of wastes are dumped daily in open dumping sites without proper management. This practice usually causes enhanced concentration of metallic ions in environmental media within and beyond the vicinity of such dumps with attendant adverse environmental and health risks. Hence the aim of this study is to assess and elucidate the physico- and metallic ions concentrations in three environmental media (soils, sediments and waters) around active (Ojota) and abandoned (Isolo) dumpsites in Lagos and also to do a comparative study with reference to possible environmental and health impacts. A total of eighty samples comprising water, sediments and topsoils were collected around the two dumpsites. The soil and sediment were dried, disaggregated and sieved to 〈75 μm fraction for analysis of the metallic ions using aqua-regia digestion technique and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The analysis of metallic ions and cations in water was carried out using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) while unacidified water samples were analyzed for anions concentrations using the DIONEX DX-120 Ion Chromatography techniques. Analytical results show that pH, NO3, Fe, Mn and Na in most of the water samples are above WHO and EPA standards. Also there are relatively strong correlations between NO3 and Cl, SO4, Coliform, TDS and EC which are an indicator of water contamination especially in the direction of groundwater flow. The mean values of the significant metallic ions present in the water samples include Cu (16.29 and 38.0), Zn (535.71 and 667.0), A1 (0.27 and 0.19), Ba (42.86 and 55.0), Sr (80.0 and 136.0) and B (118.7 and 160.2) for active (Ojota) and abandoned (Isolo) dnmpsites respectively. Soil samples revealed varied concentrations with the estimated average contamination factors of 3.86 and 5.71 (As), 1.60 and 1.93 (Mo), 3.41 and 4.24 (Zn), 0.93 and 2.23 (Cu), 7.71 and 12.64 (Pb), 8.71 and 9.21(Cd) for both active and abandoned sites respectively. All these metals with Ag are also significant and follow the same trend in the sediments. Ag, Bi, Sb, Ga, Sc, Mn, Ga and La in soil samples are only significant for samples close to the dnmpsites while Bi, Be, Sb, Co, Cu, La and Cr are significant for sediments taken downstream. Most of the metallic ions show significant enrichment in both soil and sediments while A1, B, Ba and Sr are only significant in water.  相似文献   

7.
The relationship between the stable C-isotope composition of the soil environment and modern climate and vegetation was determined empirically along a present-day climatic transect in the eastern Mojave Desert. The δ13C of the soil CO2 and carbonates decreased with increasing elevation and plant density, even though plant assemblages at all elevations were isotopically similar. Several factors, including differences in the ratios of pedogenic of limestone calcite and differences in past vegetation, were considered as explanations of this trend, However, it appears that in the sparsely vegetated Mojave Desert, the δ13C of pedogenic carbonate is controlled by differences in plant density and biological activity. This relationship may provide a tool for assessing past vegetational densities, as long as the vegetation is isotopically homogeneous.  相似文献   

8.
根据青藏高原中部那曲河流域1998年夏季测得的上下游中稳定同位素的日变化,并与同期观测的流域降水中稳定同位素比较,分析了河水中δ18O的变化特征,初步研究了该流域的稳定同位素水文循环过程.河水中δ18O的变化幅度远小于降水,它是降水中δ18O、降水量以及地表蒸发过程共同作用的结果.研究发现湖水对于稳定同位素变化起着显著的调节作用.河水中δ18O与流域降水中δ18O的差异可能反映了该流域强烈的地表和湖面蒸发作用.  相似文献   

9.
Measuring magnetic susceptibility is a method which is used to estimate the amount of magnetic particles in soils, sediments or dusts. Changes in magnetic susceptibility can be due to various reasons: input from different sources of sediments, e.g. from different soils or rocks, atmospheric fallout of anthropogenic dusts containing magnetic particles produced by fossil fuel combustion, steel production or road traffic. In the case of river sediments, input from the catchment is of primary significance. The main aim of this investigation was to test the potential of magnetic susceptibility screening in identifying the effect and significance of anthropogenic activities in an area with complex geological conditions. We investigated the magnetic susceptibility of riverbed sediments of the largest river of the Czech Republic, the Moldau river. Besides that, the magnetic signal of nearby topsoils as well as of outcropping bedrocks in the vicinity of the river was examined. In the upper 300 km of the river, the magnetic enhancement of the river sediments can be linked to anthropogenic activities. Positive correlations were found in the river sediments between the contents of Cu and Zn and magnetic susceptibility, while Fe, Mn and Ni did not show a correlation with magnetic susceptibility. However, the major geogenic magnetic anomaly in the area around the Slapy dam has made it impossible to unambiguously interpret the magnetic signal in terms of anthropogenic impact in the last 80 km downstream.  相似文献   

10.
The results of comparison of a number of main parameters of the chondrite-normalized REE distribution spectra in modern bottom, mainly pelitic, sediments of various sedimentary subsystems of the Caspian Sea and marginal filters of the Volga and Ural rivers with those characteristic of the pelitic fraction of modern bottom sediments of different river deltas worldwide are discussed. According to the features of the REE distribution spectra, as well as the εNd(0) values, it has been established that most samples of the Caspian bottom sediments are similar to those of large rivers and rivers, draining watersheds composed of sedimentary formations.  相似文献   

11.
该文在对不同始干密度的塔克拉玛干沙漠砂压缩试验结果进行分析的基础上,引入了一条归一化压缩曲线并定义了与这相对应的坚一化因子。利用该归一化压缩曲线可计算不同初始干密度、不同应力范围下浙江省砂的压缩模量,并将其结果应用于沙漠地基的沉降计算。  相似文献   

12.
Twenty-one surficial sand samples from the Altar Desert coastal and desert dune systems were analysed for rare earth elements (REE) content. This was done to observe the provenance signatures for four strategic dune localities near the Colorado River Delta, the El Pinacate dune fields, and the beaches of the north of the Gulf of California in the state of Sonora, Mexico. Our goals are to show which mechanisms (i.e., aeolian, marine) exert more influence on the composition of the Altar Desert dune sands. This study also shows the usefulness of REE spatial distribution to determine the relative mobility of the sand. Some sand samples from the dune systems in San Luis Río Colorado (SLRC), Golfo de Santa Clara (GSC), and Puerto Peñasco (PP) displayed dissimilar REE concentrations with respect to the rest of the sand samples from the same sites. These differences can be related to short aeolian transport distance in the sands with high REE concentrations and long aeolian transport distance in the sands with low REE concentrations. Besides, high REE concentration in the sands might be due to their closeness to the Colorado River Delta sediments and to recycled sands derived from granitic rocks. In contrast, all the sand samples from the El Pinacate (EP) site have similar REE concentration values, suggesting that the El Pinacate dune sands are influenced by more selective aeolian processes and less diverse heavy mineral content. The Altar Desert dune sands are derived from granitic sources eroded by the Colorado River. Our results also indicate that the Altar Desert dune sands are low in heavy mineral content (with the exception of Fe and Ti bearing minerals) and enriched in carbonates with phosphates (especially at the PP site) yielding poor correlations between REE and major element concentrations. The REE geographical distribution values in the Altar Desert dune sands indicate that light and heavy REE concentration values are related to aeolian transport, maturity of the sands, their low weathering rates, proximity of the source rocks, and the biogenic debris input from beach sands into the dune.  相似文献   

13.
The isotopic composition of groundwater sources of the Sinai Desert was surveyed. The results are characterized by a large spread in the oxygen-18 and deuterium abundances, compared to equivalent systems from less arid climates. The variability reflects differences in the altitude at which precipitation occurred, the evaporation from stagnant surface waters prior to their infiltration into the ground and admixtures of waters which are not of meteoric or recent origin. It is difficult to distinguish between water sources recharged by direct infiltration and others recharged through the intermediary of flood waters, on the basis of their isotope composition. The isotopio composition enables a clearcut distinction, however, between paleowaters and more recently recharged groundwaters. Among the conclusions: paleowaters play a central role in the deep aquifers of desert areas; direct rain recharge to aquifers is widespread; surface waters which have undergone extensive evaporation contribute their water to local perched aquifers which are found along their route.  相似文献   

14.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

15.
Sulphur isotope data from coexisting sulphides and sulphates from the Taolin Pb-Zn ore deposit have been used to estimate the temperatures of sulphur mineral precipitation. The data indicate that sulphide was the dominant sulphur species in solution at high temperatures and that sulphate was dominant at low temperatures. Also the data show that the δ34S value of total sulphur in solution was close to zero at high temperatures (~325°C) but had high positive values (+15%.) at low temperatures (~250°C). We interpret this phenomenon in terms of the effects of mineral precipitation on the isotopic composition of the solution. The increase in the δ34S value of total sulphur with decreasing temperature was brought about by the removal from the system, by precipitation, of isotopically light sulphides.  相似文献   

16.
青藏高原周边地区的地貌特征与形成演化机制一直是科学界研究的热点。选择青藏高原周边典型地区河流分形特征、地貌特征及构造活动性进行研究,发现喜马拉雅断裂带、龙门山断裂带和阿尔金断裂带控制的区域构造活动性强烈,历史地震记录频繁,大震较多,河流形态与地貌演化特征也非常相似,河流纵剖面变化很快,长波长下凹型,河流坡降比大,地形起伏度大,河流形态变化简单,河流分维值低;青藏高原东北缘构造活动性不强烈,历史地震记录偏低,大震极少,河流纵剖面变化缓慢,近似长波长微振幅上凸型,河流坡降比小,地形起伏度较小,河流形态错综复杂、分维值高;青藏高原东南缘,构造活动性较强烈,历史地震记录频繁,大震较多,但由于该区域平均多年侵蚀速率比较低,同时河流下切深度大,河流纵剖面变化缓慢,也是近似长波长微振幅上凸型,河流坡降比小,河网发育较成熟,河网分维值较高。通过对比发现,降水量的变化对该区域侵蚀速率的影响远小于构造活动性的作用,在分析河网形态特征时可以不考虑降水量空间变化的影响。  相似文献   

17.
Grossite (CaAl4O7) is one of the one of the first minerals predicted to condense from a gas of solar composition, and therefore could have recorded isotopic compositions of reservoirs during the earliest stages of the Solar System evolution. Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant. We report new and summarize the existing data on the mineralogy, petrography, oxygen and aluminum-magnesium isotope systematics of grossite-bearing CAIs from the CR, CH, CB, CM, CO, and CV carbonaceous chondrites. Grossite-bearing CAIs from unmetamorphosed (petrologic type 2―3.0) carbonaceous chondrites preserved evidence for heterogeneous distribution of 26Al in the protoplanetary disk. The inferred initial 26Al/27Al ratio [(26Al/27Al)0] in grossite-bearing CAIs is generally bimodal, ˜0 and ˜5×10−5; the intermediate values are rare. CH and CB chondrites are the only groups where vast majority of grossite-bearing CAIs lacks resolvable excess of radiogenic 26Mg. Grossite-bearing CAIs with approximately the canonical (26Al/27Al)0 of ˜5×10−5 are dominant in other chondrite groups. Most grossite-bearing CAIs in type 2–3.0 carbonaceous chondrites have uniform solar-like O-isotope compositions (Δ17O ˜ ‒24±2‰). Grossite-bearing CAIs surrounded by Wark-Lovering rims in CH chondrites are also isotopically uniform, but show a large range of Δ17O, from ˜ ‒40‰ to ˜ ‒5‰, suggesting an early generation of gaseous reservoirs with different oxygen-isotope compositions in the protoplanetary disk. Igneous grossite-bearing CAIs surrounded by igneous rims of ±melilite, Al-diopside, and Ca-rich forsterite, found only in CB and CH chondrites, have uniform 16O-depleted compositions (Δ17O ˜ ‒14‰ to ‒5‰). These CAIs appear to have experienced complete melting and incomplete O-isotope exchange with a 16O-poor (Δ17O ˜ ‒2‰) gas in the CB impact plume generated about 5 Ma after CV CAIs. Grossite-bearing CAIs in metamorphosed (petrologic type >3.0) CO and CV chondrites have heterogeneous Δ17O resulted from mineralogically-controlled isotope exchange with a 16O-poor (Δ17O ˜ ‒2 to 0‰) aqueous fluid on the CO and CV parent asteroids 3–5 Ma after CV CAIs. This exchange affected grossite, krotite, melilite, and perovskite; corundum, hibonite, spinel, diopside, forsterite, and enstatite preserved their initial O-isotope compositions. The internal 26Al-26Mg isochrons in grossite-bearing CAIs from weakly-metamorphosed CO and CV chondrites were not disturbed during this oxygen-isotope exchange.HCCJr is grateful to Klaus Keil for all his sound profession counsel and collegial friendship over the years. He has always been willing to talk and has the generous nature of listening and sharing his thoughts freely and constructively. Professor Klaus Keil has been a mentor to and played a key role in the careers of three of the authors of this paper (ANK, KN, and GRH). He has also influenced the careers of the other authors and most of the people who have worked on meteorites over the past 50+ years. We therefore dedicate this paper to Professor Keil and present it in this Special Issue of Geochemistry.  相似文献   

18.
19.
《Chemical Geology》2004,203(1-2):75-90
The lead isotopic composition of river sediments is reported in the present work for the Earth's major river basins, from old cratonic to young orogenic areas and from subarctic to tropical climates. Sediment samples from these large river basins provide a useful tool to calculate the average upper crustal composition because they are large-scale integrated samples of the weathering products of the present-day Upper Continental Crust (UCC). Two different and complementary calculations were done to estimate the average lead isotopic composition of the UCC. The first, based on the flux weighted average of particulate lead delivered by the rivers, gave values of 19.07, 15.74 and 39.35 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively. To avoid over-estimating the contribution of orogenic areas, which produces a bias (because the flux of particulate lead depends strongly on the physical erosion rate), a second calculation was done by averaging with drainage areas of each river basin. This gave values of 18.93, 15.71 and 39.03 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively. These direct calculations of the lead isotopic composition of the UCC are similar and are in agreement with previous estimates made using an indirect approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号