首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fundamental-mode Rayleigh wave attenuation data for stable and tectonically active regions of North America, South America, and India are inverted to obtain several frequency-independent and frequency-dependentQ models. Because of trade-offs between the effect of depth distribution and frequency-dependence ofQ on surface wave attenuation there are many diverse models which will satisfy the fundamental-mode data. Higher-mode data, such as 1-Hz Lg can, however, constrain the range of possible models, at least in the upper crust. By using synthetic Lg seismograms to compute expected Lg attenuation coefficients for various models we obtained frequency-dependentQ models for three stable and three tectonically active regions, after making assumptions concerning the nature of the variation ofQ with frequency.In stable regions, ifQ varies as , where is a constant, models in which =0.5, 0.5, and 0.75 satisfy fundamental-mode Rayleigh and 1-Hz Lg data for eastern North America, eastern South America, and the Indian Shield, respectively. IfQ is assumed to be independent of frequency (=0.0) for periods of 3 s and greater, and is allowed to increase from 0.0 at 3 s to a maximum value at 1 s, then that maximum value for is about 0.7, 0.6, and 0.9, respectively, for eastern North America, eastern South America, and the Indian Shield. TheQ models obtained under each of the above-mentioned two assumptions differ substantially from one another for each region, a result which indicates the importance of obtaining high-quality higher-mode attenuation data over a broad range of periods.Tectonically active regions require a much lower degree of frequency dependence to explain both observed fundamental-mode and observed Lg data. Optimum values of for western North America and western South America are 0.0 if is constant (Q is independent of frequency), but uncertainty in the Lg attenuation data allows to be as high as about 0.3 for western North America and 0.2 for western South America. In the Himalaya, the optimum value of is about 0.2, but it could range between 0.0 and 0.5. Frequency-independent models (=0.0) for these regions yield minimumQ values in the upper mantle of about 40, 70, and 40 for western North America, western South America, and the Himalaya, respectively.In order to be compatible with the frequency dependence ofQ observed in body-wave studies,Q in stable regions must be frequency-dependent to much greater depths than those which can be studied using the surface wave data available for this study, andQ in tectonically active regions must become frequency-dependent at upper mantle or lower crustal depths.On leave from the Department of Geophysics, Yunnan University, Kunming Yunnan, People's Republic of China  相似文献   

2.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

3.
A single scattering model was used to analyse the temporary changes in the mean density of scattered waves in a discrete random medium. The model of the mean energy density, originally proposed bySato (1977) for spherical radiation and isotropic scattering, has been modified and applied to a medium in which the scatterers are confined to a specified volume. The time variation of the early part of the mean energy density function for the different source durations was investigated. The dominant effect on the theoretical mean energy density is caused by the specified volume containing scatterers. The duration of the source pulse influences the early part of the coda fort/t 0<1.2, wheret is the lapse time measured from the source origin time, andt 0is arrival time of the body wave.The analysis of the coda signal of micro-events occurring immediately in front of the face enables us to estimate the size of the fracture zone induced by the stope. The model of the mean energy density of coda for a medium containing scatterers close to the seismic source was used to analyse a large number of events recorded close to an advancing mine face in a deep level gold mine in South Africa. The coda decay rate has two trends: the first, with a steep decay of coda, is produced by a larger deviation of rock parameters and/or larger size of the scatterers; the second trend, which decays more slowly, has the corresponding mean-free path ranging from 20 m to 200 m. The analysis indicates that the rock mass about 15–20 m from the stope contains a large proportion of fractured and blocked rock, which is the source of scattering. The scattering of theS-wave was much stronger and more stable, with the mean-free path varying from 11 m to 45 m. This is due to the shorter wavelength of theS wave in comparison with theP wave. The quality factor for theP coda wave varies from 30 to 100 in the fracture zone of stope and outside this zone it has a value of 300. The quality factor of theS wave varies from 20 to 78 in the equivalent volume. For rock surrounding the stope the ratioQ sp –1 /Q ss –1 varied from 0.31 to 0.69. This suggests that the radii of scatterers are smaller than 3.5 m.  相似文献   

4.
In the present study, a digital waveform dataset of 216 local earthquakes recorded by the Egyptian National Seismic Network (ENSN) was used to estimate the attenuation of seismic wave energy in the greater Cairo region. The quality factor and the frequency dependence for Coda waves and S-waves were estimated and clarified. The Coda waves (Q c) and S-waves (Q d) quality factor were estimated by applying the single scattering model and Coda Normalization method, respectively, to bandpass-filtered seismograms of frequency bands centering at 1.5, 3, 6, 12, 18 and 24?Hz. Lapse time dependence was also studied for the area, with the Coda waves analyzed through four lapse time windows (10, 20, 30 and 40?s). The average quality factor as function of frequency is found to be Q c?=?35?±?9f 0.9±0.02 and Q d?=?10?±?2f 0.9±0.02 for Coda and S-waves, respectively. This behavior is usually correlated with the degree of tectonic complexity and the presence of heterogeneities at several scales. The variation of Q c with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth. In fact, by using the Coda Normalization method we obtained low Q d values as expected for a heterogeneous and active zone. The intrinsic quality factor (Q i ?1 ) was separated from the scattering quality factor (Q s ?1 ) by applying the Multiple Lapse Time Domain Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering with uniform distribution of scatters. The obtained results suggest that the contribution of the intrinsic attenuation (Q i ?1 ) prevails on the scattering attenuation (Q s ?1 ) at frequencies higher than 3?Hz.  相似文献   

5.
Strong motion (SM) data of six Mexican subduction zone earthquakes (6.4M S8.1) recorded near the epicentral zone are analyzed to estimate their far-field source acceleration spectra at higher frequencies (f0.3 Hz). Apart from the usual corrections such as geometrical spreading (1/R), average radiation pattern (0.6), free surface amplification (a factor of 2), and equal partitioning of the energy into two orthogonal horizontal components (a factor of 1/ ), the observed spectra are corrected for a frequency dependentQ(Q=100f), a site dependent filter (e kf ), and amplification ofS waves near the surface (a factor of about 2 atf2Hz). We takeR as the average distance from the rupture area to the site. If we model the high frequency plateau (f1 Hz) of the source spectra, by a point source –2-model, and interpret them in terms of Brune's model we obtain between 50 and 100 bars for all earthquakes. The low-frequency broadband teleseismicP wave spectra, corrected witht *=1.0 s, agrees within a factor of two with SM source spectra near 1 Hz. The –2-model is inadequate to explain the observed source spectra in a broad frequency range; these resemble spectra given byGusev (1983) with some differences.SM source acceleration spectra require significant corrections to explain observed spectra and RMS acceleration (arms) (a) at farther coastal sites for extended sources due to directivity effect and (b) at inland sites (100R200 km) because of unaccounted path and site amplification and/or invalidity of body-wave approximation. The observed spectra and arms at these sites are significantly greater than the predicted values from the estimated source spectra.  相似文献   

6.
The authors conducted a Rn222 survey in wells of the Larderello geothermal field (Italy) and observed considerable variations in concentrations. Simple models show that flow-rate plays an important part in the Rn222 content of each well, as it directly affects the fluid transit time in the reservoirs. Rn222 has been sampled from two wells of the Serrazzano area during flow-rate drawdown tests. The apparent volume of the steam reservoir of each of these two wells has been estimated from the Rn222 concentration versus flow-rate curves.List of symbols Q Flow-rate (kg h–1) - Decay constant of Rn222 (=7.553×10–3 h–1) - Porosity of the reservoir (volume of fluid/volume of rock) - 1 Density of the fluid in the reservoir (kg m–3) - 2 Density of the rock in the reservoir (kg m–3) - M Stationary mass of fluid filling the reservoir (kg). - E Emanating power of the rock in the reservoir (nCi kg rock –1 h–1). - P Production rate of Rn222 in the reservoir: number of atoms of Rn222 (divided by 1.764×107) transferred by the rock to the mass unit of fluid per unit time (nCi kg fluid –1 h–1). - N Specific concentration of Rn222 in the fluid (nCi kg–1) - Characteristic time of the steam reservoir at maximum flow-rate (=M/Q)  相似文献   

7.
Two seismic wave attenuation factors, scatteringattenuation Q s -1 and intrinsicabsorption Q i -1 are measured using theMultiple Lapse Time Window (MLTW) analysis method forthree different frequency bands, 1–2, 2–4, and 4–8 Hz.Data from 54 temporally deployed seismic stationslocated in northern Chile are used. This methodcompares time integrated seismic wave energies withsynthetic coda wave envelopes for a multiple isotropicscattering model. In the present analysis, the waveenergy is assumed to decay with distance in proportionto1/GSF·exp(- (Q s -1+Q i -1r/v), where r, and v are the propagationdistance, angular frequency and S wave velocity,respectively, and GSF is the geometricalspreading factor. When spatial uniformity of Q s -1, Q i -1 and v isassumed, i.e. GSF = 4r 2, theestimates of the reciprocal of the extinction length,L e -1 (= (Q s -1+Q i -1)·/v), are 0.017,0.012 and 0.010 km-1, and those of the seismicalbedo, B 0 (= Q s -1/ (Q s -1+Q i -1)), are 0.48, 0.40and 0.34 for 1–2, 2–4 and 4–8 Hz, respectively, whichindicates that scattering attenuation is comparable toor smaller than intrinsic absorption. When we assumea depth dependent velocity structure, we also findthat scattering attenuation is comparable to orsmaller than intrinsic absorption. However, since thequantitative estimates of scattering attenuationdepend on the assumed velocity structure (strength ofvelocity discontinuity and/or Moho depth), it isimportant to consider differences in velocitystructure models when comparing attenuation estimates.  相似文献   

8.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

9.
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the signal is the site response of the nearsurface. Several examples of waveform data recorded at hard rock sites, which are generally assumed to have a flat transfer function, are presented to demonstrate the severe signal distortions, includingf max, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinctf max site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms off max and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra.  相似文献   

10.
A daily rainfall occurrence process   总被引:1,自引:0,他引:1  
A model for the periodic (annual cycle), discrete rainfall occurrence process is presented. Using this model the probabilistic properties of the process in -day intervals can be investigated. In such an interval the rainfall occurrence process is approximated by some stationary processa t ,tIN. The processa t ,tIN is described by the distributions of the lengths of wet and dry sequences. It is assumed that the lengths of successive wet and dry sequences are independent. For this process the distribution of the number of wet days in -day intervals is calculated. The model is fitted to 50-year rainfall data from Wroclaw, Poland. Rainfall amounts of 0.1, 1.0 and 2.0 mm are considered as thresholds defining a wet day. To estimate the distribution of the length of wet and dry sequences the family of Pascal distribution is chosen.  相似文献   

11.
This article summarizes work on multiple scattering based on models of media with randomly distributed scatterers. The scatterers are isotropic and statistically uniform. Measuring distance in terms of mean-free pathL s and time in terms of the mean-free timesL s/V, whereV is the velocity of scattered waves, we have more convenient dimensionless distance and time. It can be shown that after the dimensionless time equals 0.65 energy contributed from multiple scattering becomes predominant. Thus the later coda reflects the effect of multiple scattering rather than single scattering. Treating the seismic record, including starting and tail parts, as a whole, the diffusion theory predicts that at a dense distribution of scatterers and a small distance between source and receiver, codas reflect mainly intrinsicQ i. Of course, this conclusion is coincident with the presumption of the diffusion theory,Q s>Q i. However, from a new integral equation of multiple scattering, which deals with the scattered waves and primary waves separately, the conclusion is similar but clearer. This article quotes the new expression for coda energy in two-dimensional space. It shows that if the receiver is close to the source, the coda decay reflects only intrinsicQ i, then as the distance increases, effects of scatteringQ s, are involved in the decay feature. The theoretical plots of coda decay show that it seems in most cases in the earthQ i should not be smaller than one tenth ofQ s.Project Sponsored by the Joint Earthquake Science Foundation of China.  相似文献   

12.
Summary To clarify the ionization equilibrium near the ground, simultaneous measurements of the rate of ion pair production (q), the concentrations of small ions (n) and condensation nuclei (Z), and the diffusion coefficient of condensation nuclei (D) were carried out at several stations in the central area of Japan. The total rate of ion pair production (q) was estimated fromq=q(Rn)+q(Tn)+q()+q(+CR). The value ofq was estimated as 10J to 20J. The mean life () and the effective attachment coefficient () of small ions were also estimated at each station. Correlations amongn, Z, q, andD were also studied. If we take the variation ofD into consideration, the correlation was expressed by the simple formula;q=n Z. The dependence of upon size of nuclei (2r) were also measured, and was found to correlate well withD orr.  相似文献   

13.
A theoretical model is presented which allows computing the efficiency with which aerosol particles of radius 0.1r10 m are collected by simple ice crystal plates of radius 50a c 640 m in air of various relative humidities, temperatures and pressures. Particle capture due to thermophoresis, diffusiophoresis and inertial impaction are considered. It is shown that the capture efficiency of an ice crystal in considerably affected by phoretic effects in the range 0.1r1 m. For aerosol particles ofr>1 m the efficiency is strongly controlled by the flow field around the crystal and the density of the aerosol material. Trajectory analysis also predicts that aerosol particles are preferentially captured by the ice crystal rim. Our theoretica results are found to agree satisfactorily with the laboratory studies presently available. Comparison shows that for the same pressure, temperature and relative humidity of the ambient air ice crystal plates are better aerosol particle scavengers than water drops.  相似文献   

14.
The intrinsic dissipation and scattering attenuation in southwestern (SW) Anatolia, which is a tectonically active region, is studied using the coda waves. First the coda quality factor (Qc) assuming single scattering is estimated from the slope of the coda-wave amplitude decay. Then the Multiple Lapse Time Window (MLTW) analysis is performed with a uniform earth model. Three non-overlapping temporal data windows are used to calculate the scattered seismic energy densities against the source-receiver distances, which, in turn, are used to calculate separate estimates of the intrinsic and scattering factors. In order to explore the frequency dependency, the observed seismograms are band pass-filtered at the center frequencies of 0.75, 1.5, 3.0, 6.0 and 12.0. The scattering attenuation (Qs−1) is found lower than the intrinsic attenuation (Qi−1) at all frequencies except at 0.75 Hz where the opposite is observed. Overall the intrinsic attenuation dominates over the scattering attenuation in the SW Anatolia region. The integrated energy curves obtained for the first energy window (i.e., 0–15 s) are somewhat irregular with distance while the second (i.e., 15–30 s) and third (i.e., 30–45 s) data windows exhibit more regular change with distance at most frequencies. The seismic albedo B0 is determined as 0.61 at 0.75 Hz and 0.34 at 12.0 Hz while the total attenuation factor denoted by Le−1 changes in the range 0.034–0.017. For the source-station range 20–180 km considered the scattering attenuation is found strongly frequency dependent given by the power law Qs−1 = 0.010*f−1.508. The same relations for Qi−1, Qt−1 (total), Qc−1 and (expected) hold as Qi−1 = 0.0090*f−1.17, Qt−1 = 0.019*f−1.31, Qc−1 = 0.008*f−0.84 and respectively. Compared to the other attenuation factors Qc−1 and are less dependent on the frequency.  相似文献   

15.
A unified model is proposed for explaining the frequency dependent amplitude attenuation and the coda wave excitation on the basis of the single scattering process in the randomly inhomogeneous lithosphere. Adopting Birch's law and a direct proportion between density and wave velocity, we statistically describe the inhomogeneous medium by one random function characterized by the von Karman autocorrelation function. We calculate the amplitude attenuation from the solid angle integral of scattered wave energy on the basis of the Born approxiimation after subtracting the travel-time fluctuation effect caused by slowly varying velocity inhomogeneities. This subtraction is equivalent to neglect energy loss by scattering within a cone around the forward direction. The random inhomogeneity of the von Karman autocorrelation function of order 0.35 with the mean square fractional fluctuation of 7.2×10–3 1.3×10–2 and the correlation distance of 2.15.1 km well explains observed backward scattering coefficientg and the ratioQ P –1 /Q S –1 , and observed and partially conjecturedQ S –1 for frequencies between 0.5 Hz and 30 Hz.  相似文献   

16.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

17.
Zusammenfassung Es wird die Gleichung für die Elektronenproduktionq(z) abgeleitet, die die meteorologischen Elemente der Mesosphäre berücksichtigt. Nach Angaben über die mit Satelliten und Raketen gemessene Röntgenstrahlung mit 8 Å wird das Differentialspektrum des ionisierenden Energieflusses für eine mittlere Sonnenaktivität konstruiert. Auf dieser Grundlage und nach der bekannten Intensität der Strahlung Ly- sowie nach Angaben über dieElektronenproduktion der kosmischen Strahlung werden die Profileq (z),q Ly-(z) undq CR(z) für mittlere geographische Breiten und Standardatmosphäre entwickelt. Nach eingehender Analyse der vollständigen Gleichung für den effektiven Rekombinationskoeffizienten wird für die Verhältnisse in der tiefen Ionosphäre der Beitrag jeder einzelnen Komponente der Gleichung bestimmt. ist eine recht veränderliche Grösse, die von den aeronomischen und meteorologischen Verhältnissen und der Sonnenzenitdistanz abhängt. Aus den fürq(z) und (z) erhaltenen Angaben werden zwei ElektronendichteprofileN(z) für =30° und 75° erhalten. Das ProfilN(z) bei =30° wird mit dem gemittelten Profil einer umfangreichen Gruppe experimentell gefundener VerteilungenN(z) verglichen; das Profil bei =75° wird durch Messung der deviativen und nondeviativen Absorption für eine längere Zeitperiode überprüft. In beiden Fällen hat sich die Richtigkeit der theoretisch erhaltenen Profile bestätigt. Die jahreszeitlichen Variationen der nondeviativen Absorption in derD-Region sind ausschliesslich durch die Variationen der meteorologischen Parameter im Bereich der Mesopause bei konstantem Energiefluss der ionisierenden Strahlung bedingt.
Summary An equation about the electron production is deduced in which the meteorological elements of the mesosphere are taken into account. The differential spectrum of the ionizing energy flux with 3 Å for average solar activity is constructed on evidence from rocket and satelitc measurements. The profilesq (z),q Ly-(z) andq CR(z) for mean geographical latitudes and standard atmosphere are plotted on that basis as well as on data fot the known intensity of the Ly- emission and the electron production of the cosmic rays. An exhaustive analysis is made of the full equation for the effective recombination coefficient and the contribution of all its components at lower ionosphere conditions is determined. is a rather variable quantity, dependent on the aeronomical and meteorological condition of the area under consideration, as well as on the solar zenith angle. Two profiles for the electron concentrationN(z) at =30° and 75° are drawn on the basis of data forq(z) and (z). The profileN(z) at =30° is compared with the averaged profile of a large group experimentally obtained distributionsN(z); the profile at =75° is checked by measurements of the deviative and nondeviative absorption taken for a lengthy period. Both checks are in good agreement with the theoretically obtained profiles. The seasonal variations of the nondeviative absorption in theD region could be completely explained with the variations of the meteorological parameters in the mesopause area at constant energy flux of the ionizing radiation.
  相似文献   

18.
We present the first systematic study of attenuation derived from the S-wave coda in the frequency range 1-32 Hz for the southern part of the Netherlands and its surroundings. For this we used two methods, the codaQ (Q c) method and the Multiple Lapse Time Window (MLTW) method. In the interpretation of the results both single and multiple scattering in a half space are considered. Our aim is to validate these interpretations in our region and to try to identify theeffects of attenuation due to intrinsic absoprtion (Q i)and scattering attenuation (Q s). For this we analyzedmore than 100 3-component high-quality digital seismograms from 43 crustalevents and 23 different stations in the Netherlands, Germany and Belgium.Coda Q results show smaller Q c (=Q 0fn) values for epicentral distances shorter than 25 km (Q 0=90) compared to larger epicentral distances (Q 0=190), but similar frequency dependence (f-0.9). Interpretation of MLTW results provided a seismic albedo smaller then 0.5, suggesting that the intrinsic absorption dominates over scattering in this region. Both Q i and Q s show similar frequency dependences as Q c. These results are comparable to those obtained in other areas, but we also show that more sophisticated models are required to remove ambiguities in the interpretation. For short lapse times and shortevent-station distances we find for the simple half space model a correspondinginterpretation of both methodologies, where Q c correspondsto Q t, suggesting that a model with single scattering in ahalf space is appropriate. For long lapse times and long event station distances, however, we find that the S-wave coda is, most probably, too much influenced by crust-mantel heterogenities and more sophisticated Qinversion models using larger data sets are required for more reliable attenuation estimates.  相似文献   

19.
FollowingDmitriev (1960) a rigorous theoretical solution for the problem of scattering by a perfectly conducting inclined half-plane buried in a uniform conductive half-space has been obtained for plane wave excitation. The resultant integral equation for the Laplace transform of scattering current in the half-plane is solved numerically by the method of successive approximation. The scattered fields at the surface of the half-space are found by integrating the half-space Green's function over the transform of the scattering current.The effects of depth of burial and inclination, of the half-plane on the scattered fields are studied in detail. An increase in the depth of burial leads to attenuation of the fields. Inclination introduces asymmetry in the field profiles beside affecting its magnitude. Depth of exploration is greater for quadrature component. An interpretation scheme based on a phasor diagram is presented for the VLF-EM method of exploration for rich vein deposits in a conductive terrain.List of symbols x, y, z Space co-ordinates - Half-space conductivity - 0 Free-space permeability - Excitation frequency (angular) - T Time - h Depth of the half-plane - a Inclination of the half-plane - E x x-Directed total electric field - E x p x-Directed primary electric field - E xo p x-Directed primary electric field atz=0 directly over the half-plane - H y y-Component of total magnetic field - H y p y-Component of primary magnetic field - H y0 p y-Component of primary magnetic field atz=0 directly over the half-plane - H z z-Component of total magnetic field - H z p z-Component of primary magnetic field - J x Surface density ofx-directed scattering current - G Green's function - k 0,K Wave numbers - u,u 0,u 1,u 2 Functions - Space co-ordinate - s Variable in transform domain - Variable of integration - Normalized scattering current - Laplace transform of - N Normalized - , 0, 1, 2 Functions - t Variable of integration - Skin depth - H Total magnetic field - H p Primary magnetic field - H 0 p Primary magnetic field atz=0 directly over the half-plane - M,Q,R,S,U,V Functions - N 1,N 2 Functions  相似文献   

20.
Scattering of seismic waves can be shown to have a frequency dependenceQ –1 3–v if scattering is produced by arrays of inhomogeneities with a 3D power spectrumW 3D(k) k –v. In the earth's crust and upper mantle the total attenuation is often dominated by scattering rather than intrinsic absorption, and is found to be frequency dependent according toQ –1 , where –1<–0.5. IfD 1 is the fractal dimension of the surface of the 3D inhomogeneities measured on a 2D section, then this corresponds respectively to 1.5<D 11.75, since it can be shown that =2(D 1–2). Laboratory results show that such a distribution of inhomogeneities, if due to microcracking, can be produced only at low stress intensities and slow crack velocities controlled by stress corrosion reactions. Thus it is likely that the earth's brittle crust is pervaded by tensile microcracks, at least partially filled by a chemically active fluid, and preferentially aligned parallel to the maximum principal compressive stress. The possibility of stress corrosion implies that microcracks may grow under conditions which are very sensitive to pre-existing heterogeneities in material constants, and hence it may be difficult in practice to separate the relative contribution of crack-induced heterogeneity from more permanent geological heterogeneities.By constrast, shear faults formed by dynamic rupture at critical stress intensities produceD 1=1, consistent with a dynamic rupture criterion for a power law distribution of fault lengths with negative exponentD. The results presented here suggest empirically thatD 1-1/2(D+1), thereby providing the basis for a possible framework to unify the interpretation of temporal variations in seismicb-value (b-D/2) and the frequency dependence of scattering attenuation ().This is PRIS contribution 046.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号