首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Si iv, C iv, and O vi resonance lines have been measured above quiet and active solar regions from both pointed OSO-8 instruments. From calibrated profiles, optical depths are computed with three different methods. All three methods provide evidence that the opacity above faculae is lower than above the quiet Sun. From lower and upper limits of the opacity, we derive limits of the electron density. Our first method assumes only that the source function is constant without any geometrical constraint. We find higher densities above faculae than above quiet regions (about a factor 10). A second method allows us to compute the density, temperature gradient and thickness of a plane-parallel model, for active and quiet Sun. Electron densities agree with those of the first method but they lie in the lower range of values previously determined from Skylab. This result can be explained by the moderate level activity of the observed faculae. Appendices give relevant elements of transfer theory and newly computed values of collisional rates.  相似文献   

2.
The OSO-8 satellite enabled us to study various characteristics of the profiles of Si ii, Si iv, C iv, and O vi lines above active areas of the Sun, as well as above quiet areas, and to derive some physical properties of the transition region between chromosphere and corona (CCT): (i) The study of the lines shows a general tendency for the microvelocity fields on the average to be nearly constant for the heights corresponding to T > 105 K; however they seem to slightly increase with height in quiet areas, and decrease in active areas. (ii) A multicomponent model of the CCT is however quite necessary, and its geometry is far from being a set of plane-parallel columns. It is similar to an association of moving knots within the non-moving principal component of the matter. (iii) The proportion of mass, in the knots relative to that in the non-moving component, is several times larger in active regions than in quiet regions. (iv) In the knots, the non-thermal microvelocity fields are smaller in active regions and seem to decrease for T increasing above 105 K, contrary to what happens in the steady principal component. Of course, we consider that microturbulence and Doppler shift are two aspects of the same distribution of velocity.  相似文献   

3.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

4.
A model of solar flare is proposed, taking into account the high temperature (109K) produced by the shock wave generated by the hydromagnetic wave at the junction of sunspot and the area just outside it and subsequent explosive hydrogen burning, producing the desired 1028–29 ergs of a solar flare.  相似文献   

5.
The methods used and the results obtained in the measurement of the distances between the centers of chromospheric granules are described. A coincidence of these structures at two different altitudes was observed. Observations made in the K2v, or in the K3 and CN lines permit the comparison of two different altitudes: the upper and the lower chromosphere. These results include flocculi on the edge of the supergranules as well as plages. Two main results are obtained: (l)the most likely distance between two neighboring granules is, at the minimum of the solar cycle, of about 2. 60 for K3 and 2.45 for CN, and (2) this distance is decreasing with growing solar activity.  相似文献   

6.
Taking into account the effect of roughness (or local departures from sphericity) of the emitting layers in the chromosphere-corona transition zone (CCT) allows one to determine the optical depths of layers responsible for resolved structures in Cii, Ciii, Oiv, and Ovi lines. The result, at the top of the irregularities, is of the order of respectively 1 3.5,2.0, 1.6,0.5, and for the bottom of these irregularities, 2 = 0.7, 0.4, 0.3, 0.25. The characteristic angle of these irregularities is, respectively, of the order of 35 °, 33 °, 35 °, and 41 °. For unresolved structures of Civ and Ovi (already analyzed in the spherical symmetry hypothesis in Paper III), one finds 1 0.6; 0.9 and 2 0.12; 0.2 in the case of quiet areas; in the case of active areas, the range is broader for Civ and Ovi, from 1.0 to 1.7 for 1 and from 0.2 to 0.9 for 2. The values obtained from Ovi are in reasonable agreement with each other for resolved and unresolved structures. And the obtained values of 1 and 2 correspond not too badly with the determinations made in Paper III, by methods not exceedingly influenced by the spherical symmetry hypothesis.  相似文献   

7.
Sütterlin  P.  Wiehr  E.  Stellmacher  G. 《Solar physics》1999,189(1):57-68
We have determined absolute continuum intensities and brightness temperatures of individual facular grains at a spatial resolution limited by the =50 cm aperture of the SVST on La Palma. A facular region at 57° was observed simultaneously in three narrow continuum windows at 450.5, 658.7, and 863.5 nm. We corrected for image degradation by the Earth's atmosphere using the speckle masking method. The brightness temperatures do not exactly follow the Planck law. The differences of T blueT red=220 K and T irT red=–42 K reflect the wavelength dependence of the continuum formation depth. The (red) temperatures of 250 facular grains show excesses between 250 and 450 K above their undisturbed neighborhood. The wavelength dependence of the relative intensity ratios C= [I fac/I phot] show a large scatter around mean values of C blue/C red=1.075 and C ir/C red=0.98. We determined the center-to-limb variation of the 863.5 nm continuum contrast for 0.17>cos>0.39 by measuring 270 grains in reconstructed facular images. The upper envelope of the data points increases linearly to 1.5 at cos=0.17. Application of the mean color dependence yields green contrasts up to C 550=1.7, which is far higher than previously observed values. The behaviour for cos>0.17 is estimated from (unreconstructed) frame-selected best images taken over a time interval of 7 hours. Six distinct facular regions clearly discernible during the whole time interval indicate a slight contrast decrease towards the extreme limb. The observed quantities are useful for an adjustment of model calculations and for a discrimination of competing models.  相似文献   

8.
9.
H. Balthasar 《Solar physics》1990,127(2):289-292
The oscillatory behaviour of some faculae has been observed. In some cases power values in the faculae are larger than in the photosphere, but in other faculae power minima are found.  相似文献   

10.
11.
The energetics of a current sheet that forms between newly emerging flux and an ambient field are considered. As more and more flux emerges, so the sheet rises in the solar atmosphere. The various contributions to the thermal energy balance in the sheet are approximated and the resulting equation solved for the internal temperature of the sheet. It is found that, for certain choices of the ambient magnetic field strength and velocity, the internal temperature increases until, when the sheet reaches some critical height, no neighbouring equilibrium state exists. The temperature then increases rapidly, seeking a hotter branch of the solution curve. During this dynamic heating, the threshold temperature for the onset of plasma microinstabilities may be attained. It is suggested that this may be a suitable trigger mechanism for the recently proposed emerging flux model of a solar flare.This work was done while the author was participating in the CECAM workshop on Plasma Physics applied to Active Solar Phenomena, August–September 1976 at Orsay, France, and the Skylab Solar Workshop on Solar Flares (sponsored by NASA and NSF and managed by the High Altitude Observatory).  相似文献   

12.
The main theoretical studies of the process involved in solar flares have been made in the two-dimensional approximation. However, the preliminary studies made with three field components suggest that reconnection could take place in the separatrices, the separator (intersection of separatrices) being a privileged location for this process. As a consequence the sites of flare kernels must be located on the intersections of the separatrices with the photosphere. Therefore, in order to understand the role of interacting large-scale structures in solar flares, we have analysed the topology of three-dimensional potential and linear force-free fields. The magnetic field has been modelled by a distribution of charges or dipoles located below the photosphere. This modelling permits us to define the field connectivity by the charges or the dipoles at both ends of every field line.We found that the appearance of a separator above the photosphere is more likely when a parasitic bipole emerges outside the axis that joins the main polarities and when the field lines are characteristic of a field created by dipoles. The separatrices derived in the potential and force-free hypothesis have different shapes. However, in the strong field regions where flares usually occur, the separatrices of the potential and force-free field models become closer. This property makes possible the use of the potential field, as a first estimate, for computing the location in the photosphere of the separatrices and for comparing this location with the position of observed H kernels. Displacements of the separatrices of a force-free field result from modifications of the free energy of the field. Then force-free fields have the further capability of predicting the kernel displacement. In all cases a configuration suitable for prominence support is found above the separator.  相似文献   

13.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   

14.
The upper limit on the solar neutron flux from 1–20 MeV has been measured, by a neutron detector on the OGO-6 satellite, to be less than 5 × 10–2 n cm–2 s–1 at the 95% confidence level for several flares including two flares of importance 3B and a solar proton event of importance 3B. The measurements are consistent with the models proposed by Lingenfelter (1969) and by Lingenfelter and Ramaty (1967) for solar neutron production during solar flares. The implied upper limit on the flux of 2.2 MeV solar gamma rays is about the same as the 2.2 MeV flux observed by Chupp et al. (1973).  相似文献   

15.
E. Schatzman 《Solar physics》1967,1(3-4):411-419
Some ideas are developed concerning solar flares which have been presented earlier by the author (Schatzman, 1966a). Emphasis is laid on the problem of energy transport; from the energy supply to the region of the optical flare, on the storage of low energy cosmic ray particles in a magnetic bottle before the beginning of the optical flare, and the mechanism which triggers both the optical flare, and the production of high-energy cosmic rays. The relation between solar and stellar flares is considered.Lecture given at Goddard Space Flight Center, November 4, 1966.  相似文献   

16.
A new mechanism of solar faculae heating is suggested. Interaction of the convective motion with the magnetic field results in decrease of its scale down to values providing for an ohmic dissipation and leading to heating at the photospheric level. Photospheric magnetic fields, faculae and granulation are considered as a combined problem. The heating mechanism causes the observed correlation of faculae brightness with the velocity field. Some points of observation are proposed for examining the action of the suggested mechanism. The effective decreasing of the magnetic field scale may be responsible for the origin of the fine structure. The model does not contradict generally accepted ideas on the active region development.  相似文献   

17.
We present a model of solar flares triggered by collisions between current loops and plasmoids. We investigate a collision process between a force-free current loop and a plasmoid, by using 3-D resistive MHD code. It is shown that a current system can be induced in the front of a plasmoid, when it approaches a force-free current loop. This secondary current produced in the front of the plasmoid separates from the plasmoid and coalesces to the force-free current loop associated with the magnetic reconnection. The core of the plasmoid stays outside the reconnection region, maintaining high density. The core can be confined by the current system produced around the plasmoid. This collison process between a current loop and a plasmoid may explain the triggering of solar flares observed byYohkoh.  相似文献   

18.
We propose a new two-stage model for acceleration of electrons in solar flares. In the first stage, electrons are accelerated stochastically in a post-reconnection turbulent downflow. The second stage is the reprocessing of a subset of these electrons as they pass through a weakly compressive fast shock above the apex of the closed flare loop on their way to the chromosphere. We call this the 'shock-reprocessing' model. The model reproduces the sign and magnitude of the energy-dependent arrival time delays for both the pulsed and smooth component of impulsive solar flare X-rays, but requires either enhanced cooling or the presence of a loop-top trap to explain the concavity of the observed time delay energy relation for the smooth component. The model also predicts an emission site above the loop-top, as seen in the Masuda flare. The loop-top source distinguishes the shock-reprocessing model from previous models. The model makes testable predictions for the energy dependence of footpoint pulse strengths and the location and spectrum of the loop-top emission, and can account for the observed soft-hard-soft trend in the spectral evolution of footpoint emission. The model also highlights the concept that magnetic reconnection provides an environment which permits multiple acceleration processes. Which combination of processes operates within a particular flare may depend on the initial conditions that determine, for example, whether the reconnection downflow is turbulent or laminar. The shock-reprocessing model comprises one such combination.  相似文献   

19.
H. Wang  H. Zirin 《Solar physics》1987,110(2):281-293
We have measured the contrast of solar faculae near the limb on direct digital video images made with the 65 cm vacuum reflector at the Big Bear Solar Observatory. We used six broad band filters with different wavelengths from red to violet. The range of heliocentric angle covered in our measurements is 0.05 < = cos < 0.4 ( = 87°–66°). About 300 images were measured from observations made during the summers of 1983 and 1985. Over 20000 faculae were measured.By averaging the contrasts of faculae and plotting them vs heliocentric angle, we found that contrast increases monotonically towards the limb for the shorter wavelengths; for longer wavelengths, contrast has a tendency to peak around = 0.15, and then decrease towards the extreme limb. The contrast increases as wavelength decreases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号