首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usually for modeling of soil in a direct soil–structure interaction (SSI) problem, the equivalent linear soil properties are used. However, this approach is not valid in the vicinity of a foundation, where the soil experiences large strains and a high level of nonlinearity because of structural vibrations. The near-field method was developed and described in a companion paper to overcome this limitation. This method considers the effects of large strains and suggests a shear modulus and a damping ratio further modified in the near-field of a foundation. Validity and performance of this approach are evaluated, application examples are explained and the results of a parametric study about the role of soil and structure parameters in the extent of SSI effects on the nonlinear seismic response of structures are presented in this paper. One real existing and five, ten, fifteen and twenty story moment-resisting frame steel buildings with two different site conditions corresponding to firm and soft soils are considered and the responses obtained from the near-field method are compared with the recorded and rigorous responses. Moreover, various SSI modeling techniques are employed to investigate the accuracy and performance of each approach. The results show that the near-field method is a simple yet accurate enough approach for analysis of direct SSI problems.  相似文献   

2.
The dynamic response of piles to seismic loading is explored by means of an extensive parametric study based on a properly calibrated Beam-on-Dynamic-Winkler-Foundation (BDWF) model. The investigated problem consists of a single vertical cylindrical pile, modelled as an Euler–Bernoulli beam, embedded in a subsoil consisting of two homogeneous viscoelastic layers of sharply different stiffness resting on a rigid stratum. The system is subjected to vertically propagating seismic S waves, in the form of a transient motion imposed on rock outcrop. Several accelerograms recorded in Italy are employed as input motions in the numerical analyses. The paper highlights the severity of kinematic pile bending in the vicinity of the interface separating the two soil layers. In addition to factors already investigated such as layer stiffness contrast, relative soil–pile stiffness, interface depth and intensity of ground excitation, the paper focuses on additional important factors, notably soil material damping, stiffness of Winkler springs and frequency content of earthquake excitation. Existing predictive equations for assessing kinematic pile bending at soil layer interfaces are revisited and new regression analyses are performed. A synthesis of findings in terms of a set of simple equations is provided. The use of these equations is discussed through examples.  相似文献   

3.
固原重塑黄土动力特性共振柱试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
利用GCTS共振柱测试仪研究了干密度和固结压力对固原黄土重塑土动剪切模量和阻尼比的影响及试验数据误差的基本规律。通过设计不同工况的试验条件,对比分析结果表明:相同含水率条件下,最大动剪切模量G_(dmax)随固结压力和干密度的增大而增大。相同干密度条件下,黄土的动剪切模量比随围压的增大而增大;阻尼比随围压的增大而减小;相同围压条件下,黄土动剪切模量比随干密度的增大而增大,阻尼比随干密度的增大而减小;不同剪应变特征点的动剪切模量比和阻尼比试验数据呈现一定的离散性,且离散程度阻尼比明显高于动剪切模量比。研究成果可为该地区场地地震反应分析及工程建设提供基础资料。  相似文献   

4.
In the context of the heterogeneity in the unsaturated or vadose zone, accurately representing the analytical mechanisms and in-situ water content within the soil layer poses a significant challenge. Particularly in shallow layers, thermal conditions exhibit rapid changes in response to evolving surface temperatures. This study proposes a hypothesis suggesting that the in situ heat mechanism may notably impact the soil water layer. The research introduces an innovative approach to theoretically uncover thermal conditions, including soil temperature, soil temperature gradients, and heat flux, within the shallow Quaternary gravel layer at various depths through spectral analysis of temporal observations. The study presents a stochastic inverse solution to estimate thermal conductivity by leveraging spectral analysis of soil heat flux and temperature gradients. The findings reveal that thermal conditions exhibit the most prominent periodic fluctuations during the diurnal process over a 24-hour cycle. The soil temperature gradients and heat flux measurements at depths of 0.1, 0.3, 0.6, and 1.2 m demonstrate their ability to capture changes in soil temperature and air temperature to a certain extent within the frequency domain. Furthermore, the analysis highlights the intrinsic uncertainty and sensitivity of estimating thermal conductivity in heterogeneous soil environments. The wide variability observed in thermal conductivity values, coupled with their dependence on soil type and environmental conditions, underscores the need for careful consideration of these factors in future studies and modeling efforts. Applying the derived inverse spectral solution allows for determining thermal conductivity throughout the soil-water system across depths ranging from 0.1 to 1.2 m. As a result, this research demonstrates the feasibility and practicality of assessing the thermal conductivity of the soil layer in conjunction with heat flux and temperature gradients through spectral analysis.  相似文献   

5.
地温对冻土动力特性及其场地地震动参数的影响   总被引:8,自引:0,他引:8  
地温是影响冻土力学性质的重要参数之一。本文基于对2001年11月14日昆仑山口西8.1级大震在多年冻土区所造成的地表变形与地震破坏特征的定量调查结果,通过冻土的振动三轴实验,研究了地温对冻土动本构关系、动弹性模量、阻尼比、动强度等动力特性参数的定量影响规律;进而利用青藏铁路沿线4个冻土剖面和该区50年超越概率分别为63%、10%和2%的场地基岩地震动时程,分析计算了不同地温下冻土场地地震动参数的特征,研究了地温对冻土地面地震位移、速度、加速度和反应谱等的定量影响,为冻土区工程地基、路基以及地下工程震害防御提供了科学依据。  相似文献   

6.
The problem of soil–structure interaction analysis with the direct method is studied. The direct method consists of explicitly modeling the surrounding soil to bedrock and the structure resting on the soil. For the soil medium, usually the traditional equivalent linear method with a reduced shear modulus and an increased damping ratio for the soil is used. However, this method does not work in the vicinity of foundation where the soil behavior is highly nonlinear because of presence of large strains. This research proposes a modified equivalent linear method with a further reduction of the soil shear modulus in the near-field of foundation that results in validity of using the equivalent linear method throughout. For regular short, intermediate and tall structures resting on such soft soils, a series of dynamic time-history analysis is implemented using earthquake records scaled to a sample design spectrum and the nonlinear structural responses are compared for different assumptions of soil behavior including the elasto-plastic Mohr–Coulomb, the traditional equivalent linear, and the proposed modified equivalent linear method. This analysis validates the proposed method.  相似文献   

7.
根据特定震源机制、震级、断层距和场地条件选取69条地震动记录并进行分组,利用Nspectra软件计算隔震结构的弹塑性位移反应谱,分析断层距、场地条件、震级、阻尼比对弹塑性位移谱的影响,探讨隔震层的力学参数对地震能量耗散的影响。研究结果表明:相较于远场,处于近场的隔震结构最为不利,隔震层位移谱值受场地条件、地震加速度和速度大小影响较大;随着断层距的增大,位移谱值衰减较快,且在软土场地中隔震层的位移谱值衰减幅度大于硬土场地;地震震级大小对位移谱形状的影响不明显,但能够使隔震层的位移谱值产生整体缩放效应;阻尼比在小于0.4的范围内,隔震层在不同地震动特性作用下位移谱值差别较大,但在大于0.4以后,位移谱值及谱形基本趋于一致;屈服力较小(恢复力/重力小于等于1)的隔震层随自振周期增大其耗能性能更加突出。  相似文献   

8.
提高阻尼识别精度的ITD两步法   总被引:2,自引:0,他引:2  
由于无限介质中辐射阻尼的存在,地下结构抗震安全评价中正确地识别阻尼影响十分重要。阻尼从理论上指出了ITD时域识别技术在阻尼比识别方面存在误差的原因,并提出了一种改进的阻尼识别方法,算例表明,提出的方法,能显著地提高阻尼的识别精度。  相似文献   

9.
在实际工程场地中,很多土层可视为水平分层,各层土的物理和力学性质存在差异,其中包括土的振动阻尼比。本文讨论水平分层土层系统的等效阻尼比的近似计算方法,基于5个不同的加权函数推导了10种等效阻尼比的计算公式。通过2个算例,分别以等效阻尼比为参数计算水平分层土层的地震反应,并与准确解相比较,分析了不同等效阻尼比近似计算方法的计算精度。数值结果表明,若等效阻尼比计算方法选择不恰当,会导致土层地震反应的计算结果出现较大误差。针对2种不同类型的水平分层土层,建议采用基于三角形分布的加权函数来计算土层系统的等效阻尼比。  相似文献   

10.
基于航空工业组团阎良片区地震小区划项目中大量动三轴试验结果,通过双曲线拟合方法,得到主要土类(黄土状土、粉质粘土、粉土、细砂)在8个典型剪应变(0.000005、0.00001、0.00005、0.0001、0.0005、0.001、0.005、0.01)下的动剪切模量比和阻尼比统计值,并将得到的统计值与廖振鹏给出的建议值、陈党民等给出的典型值和袁晓铭等给出的推荐值进行比较,进一步论证土动力学参数的地域性特征。文中还探讨了土样埋深和取样手段(试样等级)对动剪切模量比和阻尼比的影响。文中给出的统计值可为该片区地震小区划中的土层地震反应模型提供参数,同时也为研究该片区场地土动力特性及重大工程地震安全性评价工作提供参考和借鉴。  相似文献   

11.
The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated.  相似文献   

12.
It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum, such as predominant frequency and damping ratio. A widely used method for estimating the predominant frequency of a soil site by using microtremor records, proposed by Nakamura, is investigated to determine its effectiveness in estimating the damping ratio. The authors conducted some microtremor measurements of soil sites in Hong Kong and found that Nakamura’s method might also be used to estimate the damping ratio of a soil site. Damping ratio data from several typical soil sites were obtained from both Nakamura’s ratio curves using the half power point method and resonant column tests. Regression analysis indicates that there is a strong correlation between the damping ratios derived from these two different approaches. Supported by: Research project (PolyU 5076/97E), of the Department of Civil and Structural Engineering, The Hong Kong Polytechnic University  相似文献   

13.
14.
A three-dimensional problem of cross interaction of adjacent structures through the underlying soil under seismic ground motion is investigated. The story shears and lateral relative displacements (drifts) are the targets of the computations. These are calculated using a detailed modeling of soil, the foundations and the two adjacent structures. An equivalent linear behavior is assumed for the soil by introducing reduced mechanical properties consistent with the level of ground shaking for the free-field soil. Then a distinctive soil zone (the near-field soil) is recognized in the vicinity of the foundations where the peak shear strain under the combined effect of a severe earthquake and the presence of structures is much larger than the strain threshold up to which the soil can be modeled as an equivalent linear medium. It is shown that it is still possible to use an equivalent linear behavior for the near-field soil if its shear modulus is further reduced with a factor depending on the dynamic properties of the adjacent structures, the near-field soil, and the design earthquake. Variations of the dynamic responses of different adjacent structures with their clear distances are also discussed.  相似文献   

15.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In seismology and seismic engineering soils and structures are modeled as oscillators characterized by modal (resonance) frequencies, shapes and damping. In 1973 Cole proposed the RandomDec technique to estimate both the damping and the fundamental mode of structures from the recorded time series at a single point, with no need for spectral analyses. Here we propose a number of modifications to the original RandomDec approach, that we group under the name DECÓ, which allow to determine the damping as a function of the frequency and therefore the damping of all the vibration modes. However, the motion of structures is so amplified at the resonance frequencies that detecting the characteristic parameters by recording ambient vibrations is relatively easy. More interesting is to apply the DECÓ approach to the soil in the attempt to estimate the mode damping from single station measurements. On soils, the resonance frequencies are normally identified as peaks in the horizontal to vertical spectral ratios of microtremors. However, at these frequencies what is observed is a local minimum in the vertical spectral component, sometimes associated to local maxima in the horizontal components, whose visibility depend on the specific amount of SH and Love waves at the site. The determination of soil damping is therefore a much less trivial task on soils than on structures. By using microtremor and earthquake recordings we estimate the soil damping as a function of shear strain and observe that this is one order of magnitude larger than what is measured in the laboratory on small scale samples, at least at low-intermediate strain levels. This has severe consequences on the numerical seismic site response analyses and on soil dynamic modeling.  相似文献   

17.
Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motionacceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.  相似文献   

18.
土的最大动剪切模量、剪应变幅和阻尼比是对土层进行动力反应分析的重要力学参数。利用英国GDS公司生产的RCA共振柱仪,研究围压对都江堰地区粉质粘土的上述动力学参数的影响。研究表明:相同围压条件下,最大动剪切模量、剪应变幅和阻尼比随重复次数基本不变,表明该试验过程具有可重复性;最大动剪切模量、剪应变幅和阻尼比均受围压影响较大,随着围压的增大,最大动剪切模量和阻尼比均逐渐增大,而剪应变幅随着围压的增大逐渐减小。据此,建立了都江堰地区粉质粘土动力学参数随围压变化的经验公式。本研究可为土层地震动力反应分析提供参考并积累基础资料。  相似文献   

19.
This paper investigates damping modification factors in eastern Canada based on historical and simulated records compatible with seismic hazard in this region. Damping modification factors are characterized as a function of magnitude, distance, site condition, and damping ratio. Damping modification factors corresponding to historical and simulated ground motions on rock sites are shown to exhibit the same trends for all damping levels. In addition to period dependency of damping modification factors, we demonstrate their sensitivity to magnitude variations at longer periods. The effect of distance is shown to be less pronounced. It is also observed that soil conditions affect damping modification factors at short as well as longer periods. Period-dependent equations are proposed for practical assessment of damping modification factors corresponding to damping ratios between 1 and 40%, considering different magnitude–distance combinations and soil conditions representative of seismic hazard in eastern Canada.  相似文献   

20.
The thermal conductivity of a simulated Apollo 12 lunar soil sample was measured with a needle probe under vacuum. The result showed that the sample, with bulk densities of 1.70–1.85 g cm?3 held in a vertical cylinder (2.54 cm in diameter and 6.99 cm long) has a thermal conductivity ranging from 8.8 to 10.9 mW m?1 K?1. This is comparable to the lunar regolith's thermal conductivity as determined in situ. Besides the dense packing of the soil particles, an enhanced intergranular thermal contact, due to the self-compression of the sample, is necessary to raise the sample's thermal conductivity from the level of loose soil (< 5 mW m?1 K?1) to that of the lunar regolith deeper than 35 cm (~ 10 mW m?1 K?1). A model of the lunar regolith, a thin layer of loose soil resting on a compacted self-compressed substratum, is consistent with the lunar regolith's surface structure as deduced from an observation of the lunar surface's brightness temperature. Martian regolith surface structure is similar, except that its surface layer may be missing in places because of aeolian activity. Measurements of thermal conductivity under simulated martian surface conditions showed that the thermal properties of loose and compacted soils agreed with the two peak values of the martian surface's thermal inertia as observed from “Viking” orbiters, suggesting that drifted loose soil and exposed compacted soil are responsible for the bimodal distribution of the martian surface's thermal inertia near zero elevation. For compacted soil exposed to the martian surface to have the same thermal conductivity as that buried under the surface layer, a cohesion of the soil particles must be assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号