首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a 2D model of the geological structure of Thessaloniki city and results of empirical and theoretical approaches for the evaluation of site response due to complex site effects. The construction of the 2D model is based on the available geophysical and geotechnical data in terms of the most important parameters needed to model site response. The well-known subsoil structure, despite the existence of some local uncertainties, gave the possibility to correlate the geometry and the dynamic properties of the 2D model with the results of site response determined from the analysis of one event in frequency and time domains and 1D numerical modelling. The study of site response shows the effect of the lateral variations on ground motion and suggests that the contribution of locally generated surface waves to the resonant peak may be important. In this case history, the limitations of the 1D approximation to simulate ground motion under complex soil conditions in both frequency and time domains are also shown. This paper lays the ground for a companion article dealing with 2D site effects.  相似文献   

2.
This paper presents results of numerical modeling of site response for Euroseistest. Ground motion across a very detailed model of the subsoil of this valley has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms. These results are then compared with published studies of observed site effects at this basin and with a detailed analysis of two events in the time domain. It is discussed in which sense it is possible to obtain a good fit between observations and 1D models, even though the real behavior involves locally generated Love waves. For this reason, it can be misleading to rely on an incomplete observation such as empirical transfer functions. Finally, it is stressed that in order to predict ground motion in alluvial valleys the information contained in the phase cannot be neglected.  相似文献   

3.
A detailed 2D model has been constructed and validated for Euroseistest valley, in northern Greece. We take advantage of this model to investigate what parameters, in addition to surface soil conditions (obviously the most important parameter), can be used to correctly characterize site response in a 2D structure. Through a parametric analysis using 2D numerical simulations for SH waves, we explore the differences between the computed ground motion for different simplifications of the valley's structure. We consider variations in the velocity structure within the sediments, and variations of the shape between sediments and bedrock. We also compare the results from different 1D models reflecting current approaches to the determination of site response. Our results show clearly that, in the case of Euroseistest, site response owes fundamentally to its closed basin shape because it is largely controlled by locally generated surface waves. Thus, in terms of predicting site response, a rough idea of its shape ratio and of the average mechanical properties of the sediments are better than a very detailed 1D profile at the central site. Although the details of ground motion may vary significantly between the models, the relative amount of surface waves generated in the 2D models seems to be relatively constant. Moreover, if we quantify the additional amplification caused by the lateral heterogeneity in terms of the ‘aggravation factor’ introduced by Chávez-García & Faccioli [7], a roughly constant factor between 2 and 3 seems to appropriately take into account the effects of lateral heterogeneity. Of course, a correct estimate of the overall impedance contrast is necessary to correctly predict the maximum amplification, a caveat that also applies to 1D models. In this sense, Euroseistest rings an alarm bell. In this valley the more significant impedance contrast lies at about 200 m depth, and it is missed both by consideration of the average shear wave velocity of the first 30 m (the Vs30 criterion) or using the detailed velocity profile down to a depth where a shear wave velocity larger than 750 m/s is found. Our conclusions indicate that, in order to improve current schemes to take into account site effects in building codes, the more to be gained comes from consideration of lateral heterogeneity, at least in the case of shallow alluvial valleys, where locally generated surface waves are likely to be important.  相似文献   

4.
—?Modern seismic codes usually include provisions for site effects by considering different coefficients chosen on the basis of soil properties at the surface and an estimate of the depth of bedrock. However, complex local geology may generate site amplification on soft soils significantly larger than what would be expected if we assume that the subsoil consists of plane soil layers overlaying a homogeneous half-space. This paper takes advantage of the large number of previous studies of site effects done at Euroseistest (northern Greece). Those studies have supplied a very detailed knowledge of the geometry and properties of the materials filling this shallow valley. In this paper we discuss the differences between site effects evaluated at the surface using simple 1-D computations and those evaluated using a very detailed 2-D model of the subsoil structure. The 2-D model produces an additional amplification in response spectra that cannot be accounted for without reference to the lateral heterogeneity of the valley structure. Our numerical results are extensively compared with observations, which show that the additional amplification computed from the 2-D model is real and affects by a significant factor response spectra, and thus suggests that some kind of aggravation factor due to the complexity of local geology is worthy of consideration in microzonation studies and seismic codes.  相似文献   

5.
Euroseistest is currently the longest running test site in the world. It was originally defined as the 2D cross-section of the Mygdonian basin going from Profitis to Stivos villages. In this paper, we present the first results of the effort to extend the idea of test site to a larger portion of the whole sedimentary structure, i.e. the extension of the idea of Euroseistest from a 2D to a 3D structure. To this end we have compiled available geological and geotechnical information. We have analyzed microtremor and earthquake data recorded seven years ago, that had not been thoroughly exploited. We present the results of the analysis of H/V spectral ratios from microtremors recorded at 195 sites, and from earthquake records at 14 stations. The results are validated through comparison with the well studied 2D cross-section. In addition to this, the geometry of the edges of the basin has been deduced from electrical tomographies. The synthesis of all these data allowed us to propose reliable map of dominant frequencies throughout the basin, a good constrain on the geometry of the basin at the edges, and shear-wave velocity profiles at some points. Our results indicate that average shear-wave velocity is not constant throughout, and thus the dominant frequency map is not a faithful image of the geometry of the basin. We have also obtained a reliable estimate of the site response throughout the basin. The results have been used to plan an additional measurement campaign, and are currently used to compute site response using a 3D seismic modelling code. We expect that the usefulness of Euroseistest to understand site effects in 3D geological structures will be as large as it has been in its 2D phase.  相似文献   

6.
The paper focuses on the strong motion array deployed in the upper Aterno River Valley, in the immediate outskirts north-west of the town of L’Aquila, which is part of the Italian Strong Motion Network operated by the Department of Civil Protection. The array is composed of six accelerometric stations located along a cross section of the valley. The importance of this array relies on the fact that a large amount of high-quality records were obtained during the 2009 L’Aquila seismic sequence, from both the mainshock and several aftershocks. These data are especially important to investigate site effects in sediment-filled valleys during moderate earthquakes in epicentral area because well-documented observational studies are very limited in the literature. However, the main drawback for the study of site effects in the Aterno valley is the lack of a detailed knowledge of the geometry of the valley, soil layering and dynamic properties of materials. The main motivation for this study stems from the need to provide a reliable subsoil model of the valley coupled with high-quality strong motion data. Based on the above, in the framework of S4 project, a major effort was undertaken to get a trustworthy cross section of the valley by an ad hoc investigation, comprising geological and geotechnical surveys as well as an extensive geophysical campaign, characterized by both active and passive measurements. These results were complemented by additional geological and geotechnical data available in the literature. By merging all the information acquired, a 2D subsoil model of the transversal section of the upper Aterno valley has been produced. The valley is characterised by an asymmetric shape with a shallower rock basement at the western edge of the valley that deepens at the valley centre. Moreover, based on the results of geophysical tests, representative Vs values were assigned to the different lithologic units forming the alluvial deposits filling the valley. Shear wave velocity is a fundamental parameter for ground response studies and it is also effective in classifying the accelerometric station from a seismic point of view. The 2D model may be therefore, considered a benchmark model for future studies of site effects. It will offer the possibility to examine site effects with a complex underlying geology and to validate the results of numerical simulations of site response analyses with the numerous observations from earthquake recordings, both for weak and strong ground motion conditions.  相似文献   

7.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

8.
This paper presents results of numerical modelling of site response for Thessaloniki, obtained with two different 2D methods; a finite difference and a finite element method. Ground motion across a 2D model of the subsoil of the city has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms of a weak event and of stronger ones. These results are then compared with the observations in time domain and frequency domain. The role of the soil formations with high attenuation in the lateral propagation and the effect of the differential motion close to the lateral variations are also pinpointed. The stronger events were finally used to compute strong ground motion in order to reveal and to discuss practical engineering aspects such as peak ground acceleration value, the most familiar indicator in seismic norms, the soil to rock spectral coefficients for the period bandwidth of interest, and the aggravation factor in terms of 2D to 1D response spectra as a useful ruler to account for complex site effects.  相似文献   

9.
Strong ground motion variability due to rapid changes in subsoil conditions may lead to different site responses, which in turn yields to beneficial or detrimental soil–foundation–structure interaction. This technical note presents the results of a seismic soil–structure interaction analysis conducted using a 2D finite difference model, developed with the program FLAC, of a critical section of a 60 km long strategic urban overpass, which is under construction in Mexico City, for a Mw 8.7 earthquake. Initially, the response of the free field was calibrated comparing the values obtained with FLAC, with those gathered using the computer code QUAD4M. Good agreement was observed between the results generated with these programs. Accelerations and displacements were determined at the upper deck and foundation of the urban overpass. Important seismic soil–structure interaction was observed along the overpass at the supports analyzed. This numerical study helps to gain insight regarding the site response ground motion incoherence effects that influence the dynamic behavior of this kind of structures during extreme events.  相似文献   

10.
The 3D structure of the Mygdonian sedimentary basin (N. Greece) is investigated. The aim of this study is to propose a 3D model of this sedimentary structure that can later be used to model the seismic records currently being obtained by the permanent accelerograph network operating in the area. This model builds on previous efforts and incorporates new data. The geometry and dynamic properties of the soil layers were inverted using data from microtremor array measurements, seismic refraction profiles, boreholes, and geotechnical investigations. Phase-velocity dispersion curves of Rayleigh waves were determined at 27 sites in the basin using the spatial autocorrelation method (SPAC) introduced by Aki [1]. S-wave velocity profiles were inverted from these dispersion curves and the whole valley structure was interpolated using our new results and all previously available data. The proposed 3D model describes the geometry and shear-wave velocities of the Mygdonian and pre-Mygdonian sedimentary systems, and the top bedrock surface. Our results indicate that this 3D model correctly reflects the geometry and dynamic properties of the sedimentary layers. The case of Euroseistest, where the subsoil structure is the result of bringing together many disparate data, could be used as an example for similar alluvial basins throughout the world, where usually only scarce data is available.  相似文献   

11.
The effects of surface geology on ground motion provide an important tool in seismic hazard studies. It is well known that the presence of soft sediments can cause amplification of the ground motion at the surface, particularly when there is a sharp impedance contrast at shallow depth. The town of Avellino is located in an area characterised by high seismicity in Italy, about 30?km from the epicentre of the 23 November 1980, Irpinia earthquake (M?=?6.9). No earthquake recordings are available in the area. The local geology is characterised by strong heterogeneity, with impedance contrasts at depth. We present the results from seismic noise measurements carried out in the urban area of Avellino to evaluate the effects of local geology on the seismic ground motion. We computed the horizontal-to-vertical (H/V) noise spectral ratios at 16 selected sites in this urban area for which drilling data are available within the first 40?m of depth. A Rayleigh wave inversion technique using the peak frequencies of the noise H/V spectral ratios is then presented for estimating Vs models, assuming that the thicknesses of the shallow soil layers are known. The results show a good correspondence between experimental and theoretical peak frequencies, which are interpreted in terms of sediment resonance. For one site, which is characterised by a broad peak in the horizontal-to-vertical spectral-ratio curve, simple one-dimensional modelling is not representative of the resonance effects. Consistent variations in peak amplitudes are seen among the sites. A site classification based on shear-wave velocity characteristics, in terms of Vs30, cannot explain these data. The differences observed are better correlated to the impedance contrast between the sediments and basement. A more detailed investigation of the physical parameters of the subsoil structure, together with earthquake data, are desirable for future research, to confirm these data in terms of site response.  相似文献   

12.
A detailed numerical simulation of the ground motion and a site response analysis for two towns in the Marche Region (Treia and Cagli) is carried out on the basis of structural models deduced from available geological and geophysical data. In both cases, the reference event is an M = 5.7 earthquake associated with a normal fault located beneath each town. The ground motion is computed using the 2D spectral element method (SPEM 2D). The method solves the propagation of the seismic field through complex geological structures and enables an estimate of the effects of deep crustal structure, superficial geology, and topography on ground motion. Numerical simulations of the seismic field are performed along 2D vertical planes containing the seismic source. Strong ground motion has not been yet recorded in the two towns; therefore, the numerical simulation of ground motion represents a way to overcome the lack of instrumental data. The simulations carried out for Treia show that ground motion is influenced by both source mechanism and effects due to propagation through the geological structure, while ground motion in Cagli features strong local effects, caused by the presence of alluvial deposits under a large area of the town.  相似文献   

13.
The extent of data uncertainty of surface-wave measurements may have significant consequences on 1D seismic response analysis and it may lead to inaccurate estimate of design ground motion. In this paper, an attempt has been made to quantify the data measurement uncertainty from a large repetition of the field data at two test sites and to determine bounds of data uncertainty. In the inversion with neighborhood algorithm, we generated profiles below the misfit value calculated from the uncertainty bound. Equivalent profiles have been selected covering the whole misfit value range and these profiles are subjected to equivalent linear 1D ground response analysis. The results of seismic response analysis are presented in the form of amplification spectra and response spectra which show remarkable variations. Significant variation is observed in peak frequency and peak amplification and it differs from one site to the other based on their measured data uncertainty bound. Peak Ground Acceleration (PGA) and peak spectral acceleration at both the sites reflect very high Coefficient of Variation (COV).  相似文献   

14.
Safety against earthquake hazards presents two aspects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena, such as amplification, landsliding and soil liquefaction. The correct evaluation of seismic hazard is, therefore, highly affected by risk factors due to geological nature and geotechnical properties of soils. In response to these new developments, several attempts have been made to identify and appraise geotechnical hazards and to represent them in the form of zoning maps, in which locations or zones with different levels of hazard potential are identified. The geotechnical zonation of the subsoil of the city of Catania (Italy) suggests a high vulnerability of the physical environment added to site amplification of the ground motion phenomena. The ground response analysis at the surface, in terms of time history and response spectra, has been obtained by some 1D equivalent linear models and by a 2D linear model, using a design scenario earthquake as input at the conventional bedrock. In particular, the study has regarded the evaluation of site effects in correspondence of the database of about 1200 boreholes and water-wells available in the data-bank of the Catania area. According to the response spectra obtained through the application of the 1D and 2D models, the city of Catania has been divided into some zones with different peak ground acceleration at the surface, to which corresponds a different value of the Seismic Geotechnical Hazard. A seismic microzoning map of the urban area of the city of Catania has been obtained. The map represents an important tool for the seismic improvement of the buildings, indispensable for the mitigation of the seismic risk.  相似文献   

15.
选取某核电场地控制性钻孔的厚度、剪切波速、密度等实际勘探数据,通过改变回填土剪切波速,分析了回填土不确定性对场地地震动参数的影响。研究结果表明:在回填土层厚度不变和模型总厚度不变的情况下,地表的水平向峰值加速度随着回填土剪切波速的增大而减小,但水平向峰值加速度增幅逐渐减小;回填土剪切波速到达一定的波速就不再影响地表水平峰值加速度;随着回填土剪切波速的增加,整个反应谱的谱值都普遍减小。  相似文献   

16.
An extensive campaign—including detailed geologic and geotechnical surveys both existing and news as well as noise measurements—was conducted along a cross-section in order to define both geometry and soil properties (mainly the shear wave velocity) of the main formations in Aigion city. Aigion city is located in the Gulf of Corinth, Greece, a highly seismic region of the Aegean Sea. The main objective of the accurate 2D soil model is its use in site response modeling and in the interpretation of observations from a vertical down-hole accelerograph array. This model revealed a complex geologic structure with a multi-faulted shear zone related to the Aigion fault. The defined subsurface structure offered the possibility for its correlation with estimated site effects, in terms of spectral ratios. Two different data sets, earthquakes recorded at down-hole accelerograph network and noise measurements at 17 sites, were used. To translate the empirical transfer functions with the geologic structure, the 1D estimates were also computed. All these results are consistent, indicating a satisfactory correlation between the soil model and preliminary site response.  相似文献   

17.
Strong ground motion observed at an instrumented hill site is first analysed through the standard (SSR) and the horizontal-to-vertical (HVSR) spectral ratio techniques. A reasonable agreement is found between these approaches. The observations are then compared with 3D numerical simulations, performed with a highly efficient numerical code based on a spectral method, that allowed for reasonable computer times also on a PC. The observed amplification is significantly higher than that computed with a 3D homogeneous model of the mountain, suggesting that local response is governed by large-scale and small-scale soil heterogeneities rather than by topographic site effects. The introduction of a local near-surface inclusion of nonhomogeneous soil material under one of the recording stations has not significantly improved the numerical results. The observed data are also compared with the results of simplified simulations, either using 2D homogeneous models or coupling the 3D response with a 1D local soil profile. The results of such simplified approaches are discussed and their usefulness is emphasised.  相似文献   

18.
The response of underground structures subjected to subsurface blast is an important topic in protective engineering. Due to various constraints, pertinent experimental data are extremely scarce. Adequately detailed numerical simulation thus becomes a desirable alternative. However, the physical processes involved in the explosion and blast wave propagation are very complex, hence a realistic and detailed reproduction of the phenomena would require sophisticated numerical models for the loading and material responses. In this paper, a fully coupled numerical model is used to simulate the response of a buried concrete structure under subsurface blast, with emphasis on the comparative performance of 2D and 3D modeling schemes. The explosive charge, soil medium and the RC structure are all incorporated in a single model system. The SPH (smooth particle hydrodynamics) technique is employed to model the explosive charge and the close-in zones where large deformation takes place, while the normal FEM is used to model the remaining soil region and the buried structure. Results show that the 2D model can provide reasonably accurate results concerning the crater size, blast loading on the structure, and the critical response in the front wall. The response in the remaining part of the structure shows noticeable differences between the 2D and 3D models. Based on the simulation results, the characteristics of the in-structure shock environment are also discussed in terms of the shock response spectra.  相似文献   

19.
In a companion paper local transfer functions were estimated at Tecoman using earthquake and microtremor data. In this paper, the subsoil structure at this city is investigated using seismic refraction and cross-correlation of noise records as a case study. P- and S-wave refraction profiles were measured at five sites within the city. Standard analysis constrained only very shallow layers. The P-wave refraction deployment was also used to record ambient vibration. These data were processed using an extension of the SPAC (SPatial AutoCorrelation (Aki, 1957) [1]) method; cross-correlation is computed between station pairs and the results are inverted to obtain a phase velocity dispersion curve. Penetration depth was larger than that from the refraction experiments but the shear-wave velocity of the basement could not be determined. For this reason, additional microtremor measurements were made using broad band seismometers with a larger spacing between stations. The results allowed to constrain the shear-wave velocity of the basement. Site amplification computed for the final profiles compare well with observed ground motion amplification at Tecoman. The case of Tecoman illustrates that even a simple subsoil structure may require crossing data from different experiments to correctly constrain site effects.  相似文献   

20.
以Ⅱ类场地为例,选取了山东地区2个场地的工程地质勘探及剪切波速等资料,通过改变不同深度段波速,分别建立土层模型,计算分析了不同深度段、不同概率水平条件下剪切波速的变化对场地地震动参数的影响。研究结果表明,剪切波速的变化对场地地震动加速度峰值影响在浅层影响最大,基岩输入面处次之,深层最小;对特征周期的影响,在浅层影响最大,深层次之、基岩输入面处最小。研究结果为进一步研究土层剪切波速测试中的不确定性对场地地震动参数的影响及合理确定场地地震动参数提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号