首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Vestmannaeyjar archipelago is composed of alkalic lavas erupted at the southern end of the active, southward propagating, Eastern Volcanic Zone. Recent eruptions include the most primitive (Surtsey) and most evolved (Eldfell) compositions found in this area. We studied time-stratigraphic sample suites from both eruptions to characterize the magmatic environment of Vestmannacyjar. All samples are nearly homogeneous in radiogenic isotopic ratios (87Sr/86Sr 0.70304 to 0.70327;143Nd/144Nd 0.51301 to 0.50307;206Pb/204Pb 18.96 to 19.18;207Pb/204Pb 15.50 to 15.53;208Pb/204Pb 38.47 to 38.76; KH Park and A Zindler, in preparation). Compositional trends of lavas from the two eruptions are not consistent with fractionation in a near-surface environment, but indicate rather moderate pressure evolution of small magma batches. At Eldfell, mugearite lavas can be modeled by 30% closed-system fractional crystallization of olivine+plagioclase+clinopyroxene+Fe–Ti oxides from parental hawaiite. The phase proportions are consistent with an experimentally determined moderate pressure (8 kbar) cotectic in mildly alkaline systems (Mahood and Baker 1986). Compositional variations of Surtsey lavas can be modeled by crystallization of clinopyroxene+olivine+plagioclase+minor Fe–Ti oxides. The presence of sodic plagioclase megacrysts and clinopyroxene with 8 wt% Al2O3 in xenoliths from Surtsey lavas are consistent with a moderate pressure fractionation event. Based on major-element and REE data the most primitive Surtsey lavas formed by small degrees of melting of a lherzolite source. The alkaline nature of Vestmannaeyjar lavas is not the result of assimilation of lower crustal melts (cf. Oskarsson et al. 1985; Steinthorsson et al. 1985).  相似文献   

2.
Oxygen isotope thermometry of basic lavas and mantle nodules   总被引:3,自引:0,他引:3  
Measurements have been made of the oxygen isotope and chemical composition of glass and phenocrysts in lavas and coexisting minerals in mantle nodules. Temperatures of formation of these assemblages have been estimated from various chemical thermometers and range from 855° to 1,300° C. The permil fractionations between coexisting orthopyroxene and clinopyroxene in the lavas and nodules are all near zero. The fractionations between pyroxene and olivine vary from +1.2 to –1.4 and are a smooth function of temperature over the entire range. This function is given by T(° C)=1151-173 (px-d)-682(px-d) and has an uncertainty of ±60° (2). At temperatures above 1,150° C, olivine in the nodules becomes more18O-rich than coexisting clinopyroxene, orthopyroxene, and plagioclase. In combination with the experimental work of Muehlenbachs and Kushiro (1974), the olivine-pyroxene fractionations indicate that olivine also becomes substantially more18O-rich than basaltic liquids above 1,200° C. Geothermometers based on the oxygen isotope equilibration of basaltic liquid with olivine, pyroxene, and plagioclase are presented.  相似文献   

3.
Ferric iron contents of coexisting ortho- and clinopyroxene from spinel lherzolite xenoliths were measured with Mössbauer spectroscopy and found to be significant. In orthopyroxene, the range in Fe3+/Fe is from 0.04 to 0.14; in clinopyroxene, the range is from 0.12 to 0.24. Reactions involving coexisting olivine, orthopyroxene, and clinopyroxene, where either the esseneite (CaFe3+ AlSiO6) or the acmite (NaFe3+Si2O6) component in the clinopyroxene is considered, are used to calculate oxygen fugacities. These oxygen fugacities agree well with those calculated with the olivine-orthopyroxene-spinel oxybarometer. Because these reactions do not involve garnet, spinel, or plagioclase, they may be applied to lherzolites to give internally-consistent oxygen fugacities across the pressure-dependent facies boundaries between plagioclase, spinel, and garnet lherzolite. Another application of this method is to predict the Fe3+/Fe in clinopyroxene coexisting with olivine and orthopyroxene given pressure, temperature, , and the compositions of the coexisting phases in either experimental or natural assemblages. At values of equal to those of the synthetic fayalite-magnetite-quartz buffer, for example, 15–35% of the iron in the clinopyroxenes from these xenoliths would be ferric. The simplifying assumption that all Fe is divalent in silicate phases at geologically — reasonable oxygen fugacities must be re-evaluated.  相似文献   

4.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

5.
Most Hawaiian basaltic shield volcanoes are capped by moderately to strongly evolved alkalic lavas (MgO<4.5 wt.%). On Mauna Kea Volcano the cap is dominantly composed of hawaiite with minor mugearite. Although these lavas contain dunite and gabbroic xenoliths, they are nearly aphyric with rare olivine and plagioclase phenocrysts and xenocrysts. The hawaiites are nearly homogeneous in radiogenic isotope ratios (Sr, Nd, Pb) and they define coherent major and trace element abundance trends. These compositional trends are consistent with segregation of a plagioclase-rich cumulate containing significant clinopyroxene and Fe-Ti oxides plus minor olivine. Elements which are usually highly incompatible, e.g., Rb, Ba, Nb, are only moderately incompatible within the hawaiite suite because these elements are incorporated into feldspar (Rb, Ba) and oxides (Nb). However, in the most evolved lavas abundances of the most incompatible elements (P, La, Ce, Th) exceed (by 5–10%) the maximum enrichments expected from models based on major elements. Apparently, the crystal fractionation process was more complex than simple, closed system fractionation. The large amounts of clinopyroxene in the fractionating assemblage and the presence of dense dunite xenoliths with CO2 inclusions formed at minimum pressures of 2 kb are consistent with fractionation occurring at moderate depths. Crystal segregation along conduit or magma chamber walls is a possible mechanism for explaining compositional variations within these alkalic cap lavas.  相似文献   

6.
Magmatic evolution on the active volcano of Agrigan in the northern Mariana Island Arc is interpreted as resulting in the production of calc-alkaline andesites by the fractional crystallization of high-alumina basalt. Basaltic products predominate, but the ratio of andesites to basalts increases with time up to an event of voluminous andesitic pyroclastic ejection accompanied by caldera-collapse; post-collapse lavas are entirely basaltic. Moderate iron-enrichment is demonstrated for the volcanic suite, with indications of a progressive, pre-caldera decrease in iron-enrichment; post-caldera lavas display a return to moderate Fe-enrichment. Overall, the lavas are enriched in the LIL elements (K, Rb, Ba, Sr) and depleted in Ti, Mg, Cr, and Ni. From the oldest to the youngest pre-caldera volcanic sequence, the LIL elements increase 3-6X while Ca and Mg decrease by 50% or more. Approximately constant K/ Rb (430±60) and 87Sr/86Sr (0.7032–0.7034) indicate consanguinity of the basalts and the andesites. Cumulate plutonic xenoliths, common in the lavas, are composed of mineral phases also encountered as phenocrysts. The following order of crystallization is indicated: olivine; anorthite-bytownite; clinopyroxene; orthopyroxene and titanomagnetite. Co-existing xenolithic olivines (Fo74–83) and plagioclase (An88–96) are typical of calc-alkaline island-arc assemblages and contrast with assemblages in the tholeiites from the Mariana Trough to the west. The relatively fayalitic composition and low abundances of Ni in olivines and Cr in clinopyroxenes indicate equilibrium with an already-fractionated liquid. These data, along with structural evidence, high Ca in the olivines, and comparison of the observed assemblages with experimental studies, suggests that these xenoliths formed as crystal cumulates at the floor of a shallow ( 7 km) crustal magma chamber.Major element modeling studies using the separation of observed xenocrystic and phenocrystic phases from assumed parental liquids reproduce the observed temporal and geochemical variations in the lavas. Trace element modeling parallels this evolution with the exception of Cr and Ni in the andesites. An extensive (16.3 km3) gabbroic body is required by this modeling to be present beneath Agrigan to produce the inferred volumes of the various lithologies preserved in the volcano's evolution. The sum of stratigraphic, geochemical, and isotopic evidence on Agrigan supports the derivation of calc-alkaline andesite by the removal of about 75% solids from a high-alumina basalt accompanied by a process of K and Rb enrichment, such as volatile-transfer. Considerations of 87Sr/86Sr, 143Nd/144Nd, and 3He/4He isotopic data indicate that the source region of these parental liquids lies in the mantle, not subducted crust. In the northern Marianas, the model of a shallow-crustal origin for andesite is preferred over one requiring andesite generation in the deeper mantle and/or subducted slab.  相似文献   

7.
Isotopic data were collected on lower crustal xenoliths to constrain the Mexican lower crust as source material for the mid-Tertiary Sierra Madre Occidental, which is one of the largest silicic volcanic piles known. The xenoliths are predominantly pelitic gneisses and mafic orthogneisses that were brought to the surface on the eastern edge of the Sierra Madre Occidental by recent alkalic basalts. The pelitic gneisses are uniform in mineral assemblage and contain garnet+quartz+plagioclase+sanidine+rutile +sillimanite/kyanite+graphite. The orthogneisses are plagioclase, garnet and/or spinel bearing two pyroxene granulites. Available geothermometric and geobarometric data show that the xenoliths equilibrated at temperatures and pressures consistent with those of the mantle/crust boundary in those areas.The xenoliths range from 46.2 to 67.2 SiO2. Paragneisses are in general more silicic than the orthogneisses. The xenoliths have Rb concentrations between 0.4 and 97 ppm but most samples are very low, with less than 3 ppm Rb. The Sr isotopic ratios of orthogneisses from the lowermost crust throughout most of northern Mexico are very similar and range from ca. 0.705 to 0.706. Previous studies indicate that these rocks have measured (inNd) values between+2 and –5. Paragneiss xenoliths are generally more radiogenic in Sr isotopic ratio, up to 0.730, and have lower Nd values of–11.The Nd and Sr isotopic characteristics of the orthogneisses are similar to those of the voluminous mid-Tertiary ignimbrites of the Sierra Madre Occidental. The xenoliths cannot represent cumulate material produced during the mid-Tertiary volcanism because they are Paleozoic or older. Consequently, based on Sr and Nd isotopic data, the silicic ignimbrites could comprise up to 100% lower crustal material.  相似文献   

8.
Alkalic and tholeiitic basalts were erupted in the central Arizona Transition Zone during Miocene-Pliocene time before and after regional faulting. The alkalic lava types differ from the subalkaline lavas in Sr, Nd and Pb isotopic ratios and trace element ratios and, despite close temporal and spatial relationships, the two types appear to be from discrete mantle sources. Pre-faulting lava types include: potassic trachybasalts (87Sr/86Sr = 0.7052 to 0.7055, Nd= –9.2 to –10.7); alkali olivine basalts (87Sr/ 86Sr = 0.7049 to 0.7054, Nd= –2 to 0.2); basanite and hawaiites (87Sr/86Sr = 0.7049 to 0.7053, Nd= –3.5 to –7.8); and quartz tholeiites (87Sr/86Sr = 0.7047, Nd= –1.4 to –2.6). Post-faulting lavas have lower 87Sr/86Sr (<0.7045) and Nd from –3.2 to 2.3. Pb isotopic data for both preand post-faulting lavas form coherent clusters by magma type with values higher than those associated with MORB but within the range of values found for crustal rocks and sulfide ores in Arizona and New Mexico. Pb isotopic systematics appear to be dominated by crustal contamination. Effects of assimilation and fractional crystallization are inadequate to produce the Sr isotopic variations unless very large amounts of assimilation occurred relative to fractionation. It is impossible to produce the Nd isotopic variations unless ancient very unradiogenic material exists beneath the region. Moreover the assumption that the alkalic lavas are cogenetic requires high degrees of fractionation inconsistent with major- and trace-element data. Metasomatism of the subcontinental lithosphere above a subduction zone by a slab-derived fluid enriched in Sr, Ba, P and K could have produced the isotopic and elemental patterns. The degree of metasomatism apparently decreased upward, with the alkalic lavas sampling more modified regions of the mantle than the tholeiitic lavas. Such metasomatism may have been a regional event associated with crustal formation at about 1.6 Ga. Disruption and weakening of the subcontinental lithosphere in the Transition Zone of the Colorado Plateau by volcanism probably made deformation possible.  相似文献   

9.
Ridge segments and fracture zones from the American-Antarctic Ridge have been systematically dredge sampled from 4° W to 18° W. Petrographic studies of the dredged basalts show that the dominant basalt variety is olivine-plagioclase basalt, although olivine-plagioclase-clinopyroxene basalt is relatively common at some localities. Selected samples have been analysed for major and trace elements, rare earth elements and Sr and Nd isotopes. These data show that the majority of samples are slightly evolved (Mg#=69-35) N-type MORB, although a small group of samples from a number of localities have enriched geochemical characteristics (T- and P-type MORB).These different types of MORB are readily distinguished in terms of their incompatible trace element and isotopic characteristics: N-type MORB have high Zr/Nb (17–78), Y/Nb (4.6–23) and 143Nd/144Nd (0.51303–0.51308) ratios, low Zr/Y (2.2–4.2) and 87Sr/86Sr (0.70263–0.70295) ratios and have (La/Sm)N<1.0; T-type MORB have lower than chondritic Zr/Nb ratios (8.8–15.5), relatively low Y/Nb (1.9–4.3) and 143Nd/144Nd (0.51296–0.51288) ratios and relatively high Zr/Y (3.1–4.7), 87Sr/86Sr (0.70307–0.70334) and (La/Sm)N (1.1–1.5) ratios; the single sample of P-type MORB has low Zr/Nb (6.3), Y/Nb (0.9) and 143Nd/144Nd (0.51287) ratios and high Zr/Y (7.1), 87Sr/86Sr (0.70351) and (La/Sm)N (2.4) ratios. The geochemical characteristics of this sample are essentially identical to those of the Bouvet Island lavas.Geochemically enriched MORB are less abundant on the American-Antarctic Ridge than on the Southwest Indian Ridge but their geochemical characteristics are identical. The compositions of T- and P-type MORB are consistent with a regional mixing model involving normal depleted mantle and Bouvet plume type magma. On a local scale the composition of T-type MORB is consistent with derivation from depleted mantle which contains 4% veins of P-type melt.We propose a model for the evolution of the American-Antarctic Ridge lavas in which N-type MORB is derived from mantle with negligible to low vein/mantle ratios, T-type MORB is derived from domains with moderate and variable vein/mantle ratios and P-type MORB from regions with very high vein/mantle ratios where vein material comprises the major portion of the melt. The sparse occurrence of enriched lavas and by implication enriched mantle beneath the American-Antarctic Ridge, some distance (500–1,200 km) from the Bouvet plume location, is interpreted to be the result of lateral dispersion of enriched mantle domains by asthenospheric flow away from the Bouvet mantle plume towards the American-Antarctic Ridge.  相似文献   

10.
Eighteen flows from a basal stratigraphic sequence on the Aleutian Island of Atka were analyzed for major elements, trace elements and initial 87Sr/86Sr ratios. Petrographically, these lavas contain abundant plagioclase (24–45%) and lesser amounts of olivine (<7%), magnetite and clinopyroxene phenocrysts. Compositionally, the lavas are high-alumina (20wt%) basalts (48–51 wt% SiO2) with low TiO2 (<1%) and MgO (<5%). Within the section, compositional variations for all major elements are quite small. While MgO content correlates with olivine phenocryst contents, no such relationship exists between the other oxides and phenocryst content. These lavas are characterized by 8–10 ppm Rb, high Sr (610–669 ppm), 308–348 ppm Ba and very constant Zr (23–29 ppm) and Sc (23–29 ppm) abundances. Ni and Cr display extremely large compositional ranges, 12–118 ppm and 12–213 ppm, respectively. No correlation exists between trace element concentrations and phenocryst contents. Strontium isotopic ratios show a small but significant range (0.70314–0.70345) and are slightly elevated with respect to typical MORB. No systematic correlation between stratigraphic position and petrography or geochemistry is evident. REE abundances measured on six samples are LREE enriched ((La/ Yb)N = 2.20–2.81) and display similar chondrite normalized patterns. One sample has a slight positive Eu anomaly but the other lavas do not. Compared to other Aleutian basalts of similar silica content, these lavas are less LREE enriched and have lower overall abundances. The geochemical characteristics of these basalts suggest they represent true liquid compositions despite their highly porphyritic nature. Published phase relations indicate fractionation of a more MgO-rich magma could not have produced these lavas. The high Al2O3 and low MgO and compatible element abundances suggest a predominantly oceanic crustal source for parental high-alumina basalts.  相似文献   

11.
A substantial range of petrologic rock types has erupted on the accreting plate boundary near 21° N on the East Pacific Rise (EPR). Young olivine basalts have Fo89-86 phenocrysts, low bulk TiO2 (1.1–1.3%), Ba (7–10 ppm), and high Ni contents (>100 ppm). Older plagioclase-olivine-pyroxene (POP) basalts have Fo86-81 phenocrysts, high TiO2 (1.4–1.7%), Ba (9–40 ppm), and low Ni (<100 ppm). The youngest olivine basalts erupt immediately around a segmented axial fissure system. Progressively older, more fractionated POP basalts have spread farther from the same fissure system, producing a stratigraphically-controlled zonal pattern of basalt type distribution around the eruptive fissures. A topographic and morphologic en echelon displacement of the ridge axis fissure of 1.7 km to the NW near 20°54N offsets this zonal distribution pattern. Low pressure crystal fractionation of olivine, plagioclase, and clinopyroxene (251) from an olivine basalt parent would yield POP basalts of the observed Zr, Ti, Y, P and major element chemistry. However very incompatible elements Ba and K are too variably enriched in POP basalts for this model to be viable. Small, variable degrees of mantle partial melting is not a viable model either because of the substantial depletion of Ni which correlates with incompatible element enrichment and because of the precise low pressure cotectic character of POP basalts. The in situ fractionation model of Langmuir (1987) can explain these features. The relative abundance of fractionated lavas, their small-scale areal chemical zonation, the petrochemical correlation between types, and geophysical evidence point to the existence of shallow fractionating magma reservoirs beneath the EPR at 21° N.  相似文献   

12.
On the basis of their textures and mineral compositions spinel-peridotite xenoliths of the Cr-diopside group (group I) from Cenozoic volcanic fields of Arabia can be classified into different subtypes. Type IA is of lherzolitic to harzburgitic composition; mineral compositions are similar to those of group I mantle xenoliths from worldwide occurrences. Type IB xenoliths have lherzolitic to wehrlitic compositions; Mg/(Mg+Fe) ratios of the clinopyroxenes (0.862–0.916) and olivines (0.872–0.914) are similar too or slightly lower than those of typical IA minerals. Texturally, type IB xenoliths are distinguished from type IA rocks by the presence of intragranular spinel, intragranular relict Cr-pargasite, and subordinate intergranular Ba-phlogopite (11.1% BaO). The hydrous minerals in type IB xenoliths are interpreted to document an earlier metasomatism 1 which did not affect type IA lithospheric mantle. Subsequent recrystallization caused the partial replacement of Cr-pargasite in type IB materials and resulted in the formation of less hydrous mineral assemblages. Some of the type IA xenoliths are characterized by secondary intergranular amphibole which must have formed recently. The absence or presence of this intergranular amphibole is used to distinguish an anhydrous subtype IA1 from a hydrous subtype IA2. Type IB xenoliths may also contain secondary intergranular amphibole (similar to the one in subtype IA2) or they contain abundant formermelt patches now consisting of glass and phenocrysts of olivine, clinopyroxene, amphibole, and spinel. The secondary intergranular amphiboles and the former melt patches, both are interpreted as results of a second metasomatism (metasomatism 2). In their trace element and isotopic characteristics, type IA1 and type IA2 clinopyroxenes do not exhibit any systematic differences. Furthermore, type IA2 clinopyroxenes are in Sr isotopic disequilibrium with intergranular amphiboles. This suggests that type IA2 clinopyroxenes were not modified during the second metasomatism 2. All type IA clinopyroxenes have low Sr contents (100 ppm); most of them show Sm/Nd ratios higher than inferred for bulk earth. In their 87Sr/86Sr and 143Nd/144Nd ratios, type IA clinopyroxenes exhibit a large spread from 0.70226–0.70376 and from 0.51375–0.51251, respectively. Highly variable Sr/Nd ratios (5.0–79.3) and variable TUR and TCHUR model age relationships require different evolutions of the respective mantle portions. Nevertheless, all but two type IA clinopyroxenes form a linear array in a Sm–Nd isochron diagram which probably can not be explained by mixing. If taken as an isochron the slope of the array corresponds to an age of around 700 Ma. The mean initial Nd of 5.8±1.7 (1) is similar to values for juvenile Pan-African (i.e. 850–650 Ma old) crust of the Arabian-Nubian shield. It is suggested that type IA lithospheric mantle and the juvenile Pan-African crust are two counterparts fractionated from a common source during the earlier stages of the Pan-African. Type IB clinopyroxenes have high Sr contents (200 ppm), variable Sr/Nd ratios (9–111) and Sm/Nd ratios generally below that inferred for bulk earth, and show a small spread in their Sr and Nd isotopic compositions (0.70299–0.70318 and 0.51285–0.51278, respectively). In a Sm–Nd isochron diagram the data points form a linear, horizontal array indicating a close-to-zero age for the earlier metasomatism 1 and suggesting a close genetic relationship to mantle processes related to the formation of the Red Sea.  相似文献   

13.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

14.
Lavas of the Biu and Jos Plateaus, Northern Cameroon Volcanic Line (CVL), contain abundant genetically related megacrysts of clinopyroxene, garnet and subordinately plagioclase, ilmenite and amphibole. P, T-estimates of crystallization for the primitive group of cpx and gnt megacrysts are 1.7–2.3 GPa and ~1,400 °C. Because crustal thickness in these areas is only ~30 km (~0.9 GPa), megacrysts must have formed within the lithospheric mantle. Primitive Biu and Jos lavas are isotopically heterogeneous in Sr-Nd isotope space (87Sr/86Sr=0.70285–0.70360 and Nd=7.5–4.6). Biu Plateau megacrysts overlap the range of Biu lavas in Sr-Nd isotope composition, indicating that crustal contamination of Biu lavas was minor. Jos Plateau lavas are isotopically more enriched than their associated megacrysts. Therefore an additional contamination of Jos lavas due to assimilation of continental crust (~5%) or enriched shallow lithospheric mantle is indicated. Lavas of Biu and Jos Plateau do not reflect simple fractionation or equilibrium crystallization products, but instead reflect mixing between primary melts and their fractionated derivatives.Editorial Responsibility: I. Carmichael  相似文献   

15.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

16.
Glassy pillow basalts with unusual geochemical characteristics for mid-ocean ridge basalt (MORB) have been dredge sampled from the Southwest Indian Ridge between 12 and 15°E during Leg ANT IV/4 of the F.S. POLARSTERN. Lavas from 4 of 6 dredges are moderately nepheline normative, highly K-enriched (0.5–1.77 wt% K2O) alkali basalts and hawaiites. Mg-numbers indicate that many of the lavas are fairly primitive (Mg No.=63–67), yet show extreme enrichment in incompatible elements; e.g. Nb (24–60 ppm), Ba (170–470 ppm) and Sr (258–460 ppm). Incompatible-element ratios such as Zr/Nb (3–5) and Y/Nb (0.46–1.1) are extremely low even for E-type (enriched) MORB, whereas (La/Yb)n ratios are particularly high (3.4–7.8). 87Sr/86Sr (0.70290–0.70368), 143Nd/144Nd (0.51302–0.51284) and 206Pb/204Pb (18.708–19.564) isotopic ratios further indicate the geochemically enriched nature of these lavas, which range from the compositional field for depleted N-type (normal) MORB towards the composition of Bouvet Island lavas. Mutually correlated incompatible-element and Sr-, Nd- and Pb-isotopic ratios allow a fairly well constrained model to be developed for the petrogenesis of these unusually alkalic mid-ocean ridge lavas. The alkalic nature and degree of enrichment in incompatible elements is ascribed to particularly low degrees of partial melting (3–5 wt%), at greater than usual depth, of a source region that has experienced prior geochemical enrichment (by veining) related to the upwelling Bouvet mantle plume. To account for the observed compositional variations, a model is proposed whereby mixing between partial melts derived from these geochemically enriched silicate veins, and an incipient to low percentage (±2%) melt from the surrounding geochemically depleted suboceanic asthenosphere occurs as a consequence of increasing degree of melting with adiabatic upwelling. Eruption of these alkalic lavas in this spreading ridge environment is attributed to a temporary hiatus in tholeiitic volcanism and associated spreading along this section of the Southwest Indian Ridge, related to readjustment of spreading direction to a more stable plate geometry.  相似文献   

17.
The picritic Mælifell pillow lava series contains olivine macrocrysts (Fo 83.0–91.7) and microphenocrysts (Fo 86.8–88.5), resorbed Cr–Al endiopside, ± plagioclase, and microphenocrysts of Cr-spinel. The most primitive olivine cores (Fo 90–91.7) are probably derived from a peridotitic mantle. Gabbroic adcumulus xenoliths in the lavas contain plagioclase, Cr–Al endiopside and olivine (Fo 85.5–87.5) which overlap compositionally with lava minerals, ± Cr-spinel. This suggests that all pyroxene and much of the olivine ± feldspar in the lavas are xenocrysts. Olivines from the pillow lavas and from the gabbroic xenoliths contain inclusions of Cr-spinel, silicate glass and pure or nearly pure CO2. Early (type 1) silicate melt inclusions which occur in lava-olivine only, have crystalized 0.1 to 4 vol.% daughter spinel and unknown amounts of olivine during pre-eruptive cooling. Later (type 2) glass inclusions in olivine from the lavas do not contain daughter minerals; similar type 2 inclusions also occur in the xenoliths. High-temperature microthermometry at buffered oxygen fugacity (f O 2) gives a plagioclaseout temperature of about 1230°C for both types of silicate melt inclusions; this was interpreted as the liquidus temperature for type 2 inclusions. Molar volumes of undisturbed CO2 inclusions in olivine from both lavas and xenoliths correspond to a depth of trapping of 7–10 km (2.2–3.0 kbar) at 1230°C. This is interpreted as a minimum depth to a partially molten layer near the crust/mantle boundary in the rift zone. The xenoliths are thus probably derived from a layered olivine-gabbro complex similar to those occurring in ophiolite complexes.  相似文献   

18.
Mineralogical, major and trace element, and isotopic data are presented for leucite basanite and leucite tephrite eruptives and dykes from the Batu Tara volcano, eastern Sunda arc. In general, the eruptives are markedly porphyritic with phenocrysts of clinopyroxene, olivine, leucite ±plagioclase±biotite set in similar groundmass assemblages. These K-rich alkaline volcanics have high concentrations of large-ion-lithophile (LIL), light rare earth (LRE) and most incompatible trace elements, and are characterized by high 87Sr/86Sr (0.70571–0.70706) and low 143Nd/ 144Nd (0.512609–0.512450) compared with less alkaline volcanics from the Sunda arc. They also display the relative depletion of Ti and Nb in chondrite-normalized plots which is a feature of subalkaline volcanics from the eastern Sunda arc and arc volcanics in general. Chemical and mineralogical data for the Batu Tara K-rich rocks indicate that they were formed by the accumulation of variable amounts of phenocrysts in several melts with different major and trace element compositions. The compositions of one of these melts estimated from glass inclusions in phenocrysts is relatively Fe-rich (100 Mg/(Mg + Fe2+)=48–51) and is inferred to have been derived from a more primitive magma by low-pressure crystal fractionation involving olivine, clinopyroxene and spinel. Mg-rich (mg 90) and Cr-rich (up to 1.7 wt. % Cr2O3) zones in complex oscillatory-zoned clinopyroxene phenocrysts probably also crystallized from such a magma. The marked oscillatory zoning in the clinopyroxene phenocrysts is considered to be the result of limited mixing of relatively evolved with more primitive magmas, together with their phenocrysts, along interfaces between discrete convecting magma bodies.  相似文献   

19.
Peridotite xenoliths from Grenada,Lesser Antilles Island Arc   总被引:2,自引:2,他引:0  
Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts.Editorial responsibility: T.L. Grove  相似文献   

20.
Geochemical analyses were interpreted on the dominant lithological units and on a deep crustal fluid from the Continental Deep Drilling Project (KTB) Pilot Hole, situated at the western margin of the Variscan Bohemian Massif. The biotite gneiss (from 384 m depth) shows a rare earth element pattern very similar to the European shale composite with Nd model ages of 940 Ma (CHUR) and 1.4 Ga (DM). The lamprophyre dike in the upper profile (1549 m), a nepheline and olivine normative basalt, is geochemically and isotopically similar to rocks from the Tertiary Central European Volcanic Province. The lower metabasite sequence (3575–4000 m), with an intrusion age of approximately 500 Ma, is made up primarily of highly metamorphosed subalkalic olivine basalts. The geochemical characteristics of the metabasites are a (La/Yb)N of 5–10, an La concentration of 20–50 times chondrite as well as (87Sr/86Sr)i of 0.7035–0.7038 and Nd(T) of 4–6. These values suggest a depleted mantle source for the igneous precursors, evolving by assimilation-fractional crystallization processes with up to 25% of upper crust into the ultramafic, basaltic, and intermediate rock types of the metabasite sequence. The strong geochemical and chronological similarities between the KTB metabasites and rocks from the Münchberg Massif suggest that these units belong to the same lithological complex. The high salinity as well as the radiogenic 87Sr/86Sr ratio of 0.709413 in the KTB fluid from 4000 m depth might be the result of migrating fluids reacting with the regional Permo-Mesozoic evaporite deposits, followed by extensive Sr isotopic exchange with the upper crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号