首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates the patterns and effects of relative sea-level rise on the tidal circulation of the basin of the Ria Formosa coastal lagoon using a process-based model that is solved on an unstructured mesh. To predict the changes in the lagoon tidal circulation in the year 2100, the model is forced by tides and a static sea level. The bathymetry and the basin geometry are updated in response to sea-level rise for three morphological response scenarios: no bed updating, barrier island rollover, and basin infilling. Model results indicate that sea-level rise (SLR) will change the baseline current velocity patterns inside the lagoon over the ~100-year study period, due to a strong reduction in the area of the intertidal basin. The basin infilling scenario is associated with the most important adjustments of the tidal circulation (i.e., increases in the flood velocities and delays in the ebb tide), together with an increase in the cumulative discharges of the tidal inlets. Under sea-level rise and in the basin infilling scenario, the salt marshes and tidal flats experience increases in the tidal range and current asymmetry. Basin infilling changes the sediment flushing capacity of the lagoon, leading to the attenuation of the flood dominance in the main inlet and the strengthening of the flood dominance in the two secondary inlets. The predictions resulting from these scenarios provide very useful information on the long-term evolution of similar coastal lagoons that experience varying degrees of SLR. This study highlights the need for research focusing on the quantification of the physical and socio-economic impacts of SLR on lagoon systems, thus enabling the development of effective adaptation strategies.  相似文献   

2.
This work investigates the recent morphological changes at the inlet of a complex coastal system (Ria de Aveiro lagoon, Portugal). This study was carried out using bathymetric data analysis and numerical simulations obtained with the 2DH morphodynamic modelling system MORSYS2D. The present simulations considered only tidal forcing, and a sensitivity analysis was performed by tuning the formula used to compute the sediment transports. A non-uniform sediment grain size distribution for the Ria de Aveiro inlet is considered in the numerical simulations, based on surveys performed in this area. The model results are analysed to assess if they resemble the observed trends of erosion and deposition, as calculated from bathymetric data. A quantitative analysis of the differences between the bathymetric changes obtained through surveys and the numerical results over a period of 3 years considering different sediment transport formulations shows that the formulations of Ackers and White (1973) and Engelund and Hansen (1967) are the ones that best describe the morphodynamic changes driven by tides in the Ria de Aveiro inlet.  相似文献   

3.
The morphologic changes in estuaries and coastal lagoons are very complex and constitute a challenging task in coastal research. The bathymetric changes result from the combined action of tides, waves, rivers discharge and wind stress in the area of interest. Additionally, an accurate knowledge of the sediment transport is essential to achieve a good morphological characterization. This work establishes the influence of the wave climate on the morphodynamics of the Ria de Aveiro lagoon inlet by analysing the numerical results of the morphodynamic modelling system MORSYS2D. The numerical simulations considered a realistic coupled forcing of tidal currents and waves. The computed sediment fluxes and bathymetric changes are analysed and compared with the erosion and accretion trends obtained from the numerical simulations forced only by tidal currents, in order to establish the wave climate influence. The final bathymetry and the corresponding changes are compared with bathymetric data collected through surveys. It is concluded that: (a) the morphodynamics of the study area is dominated by the wave regime in the lagoon inlet and nearshore areas, while in the inner areas is tidally dominated; and (b) the inclusion of the wave regime forcing constitutes an improvement in order to accurately reproduce the local morphodynamics.  相似文献   

4.
Tidal velocity asymmetry at inlets influences sediment transport pathways and the morphological evolution of estuaries/lagoons connected to these inlets. Generation of overtides is generally seen as the main cause of tidal velocity asymmetry. Whilst majority of studies examining tidal velocity asymmetry have concentrated on inlets located in semi-diurnal tidal regimes, here, attention is focused on the processes responsible for causing tidal velocity asymmetry at inlets located in diurnal tidal regimes. Using field data collected from three West Australian inlets, it is shown that tidal velocity asymmetry in this type of system is caused by the oceanic tidal conditions. It is also shown that in these systems, the occurrence of flood/ebb dominance can be determined using oceanic tidal elevations, which are more readily available than inlet current data. In contrast to semi-diurnal systems the flood/ebb dominance in diurnal systems varies throughout the year depending on the phase angle relationship between the significant oceanic tidal constituents. The net sediment transport in to/out of these systems, which determines the morphological evolution of the systems, is shown to be governed more by the degree of tidal velocity asymmetry rather than the number of occurrences or duration of flood/ebb-dominant periods.  相似文献   

5.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

6.
Barrier systems have received much attention along microtidal oceanic coastlines, where countless studies discuss their evolution in response to Holocene sea‐level rise, storm influence, and anthropogenic impacts. Lacustrine barrier evolution is not as well investigated and little is known about how lake‐specific hydrodynamic processes shape barrier morphology. This study evaluates the evolution of a highly dynamic barrier section along eastern Lake Ontario in the context of varying water levels and winter‐ice covers. Paleoshoreline reconstructions and volumetric analyses of nearshore sedimentation indicate the central portion of the studied North Pond barrier has been breached many times in different locations throughout the last century. Ground‐penetrating radar (GPR) data corroborate mapped locations of former inlets, bound at the surface by recurved spit and dune ridges. Subsurface structural controls on inlet position are inferred from a spatial correlation with buried incised fluvial channels, formed during a Holocene lake‐level lowstand. While subsurface controls caused two separate historical inlets to remain stationary while open, an episode of rapid inlet migration elsewhere along the barrier was facilitated by the prevailing direction of coastal currents and high lake levels, which favored overwash and rapid longshore sediment mobility across a low‐gradient barrier section. Additionally, the sudden closing of an inlet after many decades of operation coincidental with the opening of another suggestively occurred alongside unusually high lake levels. These correlations suggest the degree of coastal inundation, predominantly a function of fluctuating lake levels and antecedent topography, represent strong controls on overall barrier geomorphology over decadal timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Bed diversity in the shallow water environment of Pappas lagoon in Greece   总被引:2,自引:0,他引:2  
<正>Acoustic classification systems and the Sediment Trend Analysis method were used to identify and map the bed diversity in a very shallow(3.0m),coastal lagoon,Pappas lagoon,Western Greece. Analogue acoustic data,collected by means of a 100 kHz side scan sonar system,were digitized and classified into six acoustic classes using recently developed acoustic classification systems (SonarClass,TargAn).By comparing the acoustic classes to ground truth data consisting of sediment grain size and visual inspection of the lagoon-bed,it is demonstrated that the six acoustic classes correlate well with the predominant surface sediment types and vegetation.Thus the spatial distribution of the classes can be considered to represent the spatial pattern of the sedimentary assemblages of the lagoon.The grain size trend analysis identified three dominant sediment pathways and directional trends which could be related to the predominant wind direction,the sediment influx through the inlets and the sediment supply from a small stream in the southern part of the lagoon.The integration of acoustic and sedimentological data together with advanced data processing systems leads to a better understanding of the sedimentary,morphological and biological processes in a shallow lagoon in different spatial and temporal scales and will therefore be beneficial to both sedimentological and biotic-diversity studies.  相似文献   

8.
The dynamics of sediment transport in the East Frisian Wadden Sea are important for the coastal zone and for ecosystem functioning. The tidal inlets between the East Frisian islands connect the back-barrier intertidal flats to the North Sea. Here, concentrations of suspended particulate matter (SPM) in the water column are highly variable, depending on weather conditions and tides. In order to estimate the nature and quantity of sediment transport, in situ measurements were carried out at a Time Series Station in the tidal inlet between the islands of Spiekeroog and Langeoog. This study shows the suitability of multispectral transmissometry (MST) for obtaining long-term SPM measurements with high resolution. The comparability of this technique to the standard filter method and the laser diffraction method [laser in situ scattering and transmissometry (LISST)] is demonstrated. In addition, the Junge coefficients derived from both MST and LISST measurements are compared. A time series of SPM data covering nearly 4 months is presented. As a major result, the data reveal that a single storm surge can have less impact on SPM dynamics than longer-lasting gales. This high-resolution long-term data set is very valuable for modelling suspended matter flux. It also provides background information for studying the influence of SPM dynamics on coastal sediments.  相似文献   

9.
The cross-sectional stability of double inlet systems is investigated using an exploratory model that combines Escoffier’s stability concept for the evolution of the inlet’s cross-sectional area with a two-dimensional, depth-averaged (2DH) hydrodynamic model for tidal flow. The model geometry consists of four rectangular compartments, each with a uniform depth, associated with the ocean, tidal inlets and basin. The water motion, forced by an incoming Kelvin wave at the ocean’s open boundary and satisfying the linear shallow water equations on the f -plane with linearised bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. The analysis of resulting equilibrium configurations is done using flow diagrams. Model results show that internally generated spatial variations in the water motion are essential for the existence of stable equilibria with two inlets open. In the hydrodynamic model used in the paper, both radiation damping into the ocean and basin depth effects result in these necessary spatial variations. Coriolis effects trigger an asymmetry in the stable equilibrium cross-sectional areas of the inlets. Furthermore, square basin geometries generally correspond to significantly larger equilibrium values of the inlet cross-sections. These model outcomes result from a competition between a destabilising (caused by inlet bottom friction) and a stabilising mechanism (caused by spatially varying local pressure gradients over the inlets).  相似文献   

10.
In this study, the artificial opening of a new tidal inlet in an existing multiple inlet system is shown to significantly modify the adjacent nearshore and backbarrier morphology, as well as both updrift and downdrift shorelines. The study focuses on the dominant Faro‐Olhão and Armona inlets in the Ria Formosa barrier island system of southern Portugal. The equilibrium state and future evolution of the system are inferred using a range of morphological and hydrodynamic indicators, including the evolution of the inlet cross‐section, changes in tidal prism, and changes in the dimensions (length and area) of barrier islands. The results reveal how the morphology of an interconnected two‐inlet bay system and the adjacent coastlines has evolved following the artificial opening and stabilization of Faro‐Olhão inlet since 1929. A clear relationship between barrier island size, inlet cross‐section/width, and tidal prism is demonstrated. Decadal time‐scale changes in the tidal prism of the two interconnected inlets are shown to be the main mechanism responsible for morphological change, and have resulted in the remobilization of ebb‐tidal delta sediments deposited during previous hydraulic configurations. These changes, in turn, have contributed to a narrowing of Armona inlet and an increase in the size of Culatra Island. The work highlights the importance of ebb‐tidal deltas both as sand reservoirs and as conduits through which sand exchange between estuaries or lagoons and the open coast is regulated. It also shows the pivotal role of ebb‐tidal deltas in trapping longshore‐transported sediment and releasing it again during periods of increased wave activity. The findings have implications regarding the accurate assessment of the stability of multiple inlet systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Tidal inlets interrupt longshore sediment transport, thereby exerting an influence on adjacent beach morphology. To investigate the details and spatial extent of an inlet's influence, we examine beach topographic change along a 1.5 km coastal reach adjacent to Matanzas Inlet, on the Florida Atlantic coast. Analyses of beach morphology reveal a behavioral change between 0.64 and 0.86 km from the inlet channel centerline, interpreted to represent the spatial extent of inlet influence. Beyond this boundary, the beach is narrow, exhibits a statistically significant inverse correlation of shoreline position with offshore wave conditions, and has a uniform alongshore pattern in temporal behavior, as determined from empirical orthogonal function (EOF) analysis. On the inlet side of the boundary, the beach experiences monotonic widening (with proximity to the inlet), lacks spatial consistency in correlation between shoreline position and wave conditions, and exhibits an irregular pattern in spatial EOF modes. We augment the field observations with numerical modeling that provides calculations of wave setup and nearshore current patterns near the inlet, highlighting the effects of the ebb‐tidal delta on the assailing waves. The modeling results are verified by a natural experiment that occurred during May 2009, when a storm‐produced sedimentary mass accreted to the lower beach, then subsequently split into two oppositely directed waves of sediment that migrated away from the initial accretion site in the subsequent months. Our results suggest that the ebb‐tidal delta produces a pattern of wave setup that creates a pressure gradient driving an alongshore flow that opposes the longshore currents derived from breaking of obliquely oriented incident waves. The resulting recirculation pattern on the margin of the ebb‐tidal delta provides a mechanism through which the inlet influences adjacent barrier island beach morphology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.

The cross-sectional stability of double inlet systems is investigated using an exploratory model that combines Escoffier’s stability concept for the evolution of the inlet’s cross-sectional area with a two-dimensional, depth-averaged (2DH) hydrodynamic model for tidal flow. The model geometry consists of four rectangular compartments, each with a uniform depth, associated with the ocean, tidal inlets and basin. The water motion, forced by an incoming Kelvin wave at the ocean’s open boundary and satisfying the linear shallow water equations on the f -plane with linearised bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. The analysis of resulting equilibrium configurations is done using flow diagrams.

Model results show that internally generated spatial variations in the water motion are essential for the existence of stable equilibria with two inlets open. In the hydrodynamic model used in the paper, both radiation damping into the ocean and basin depth effects result in these necessary spatial variations. Coriolis effects trigger an asymmetry in the stable equilibrium cross-sectional areas of the inlets. Furthermore, square basin geometries generally correspond to significantly larger equilibrium values of the inlet cross-sections. These model outcomes result from a competition between a destabilising (caused by inlet bottom friction) and a stabilising mechanism (caused by spatially varying local pressure gradients over the inlets).

  相似文献   

13.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

14.
The response of the tidal system in the southern North Sea to morphodynamic changes was investigated in a modelling study using fine resolution bathymetric observations available for 1982–2011. The Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) was set up for the different sets of bathymetries. One set of bathymetry was compiled from a large number of bathymetric measurements over many years, while the other two reflected bathymetry state in the area of Wadden Sea during 2000 and 2011, respectively. The temporal and spatial evolution of bathymetry was dominated by migration of tidal channels. The M4 tide showed larger sensitivity to bathymetric change in the Wadden Sea than the M2 tide, whereas the structure of the latter remained rather robust. The largest change of the tidal wave due to the differences in bathymetries was located off the North Frisian Wadden Sea. Traces of changes were also found far away from the regions of their origin because the tidal waves in the North Sea propagate the local disturbances basin-wide. This illustrated an efficient physical mechanism of teleconnectivity, i.e. effecting the local responses to the larger-scale or remote change of ocean bottom caused by erosion and deposition. The tidal distortion resulting from the relatively small bathymetric changes was substantial, particularly in the coastal zone. This is a manifestation of the nonlinear tidal transformation in shallow oceans and is crucial for the sediment transport and the morphodynamic feedback, because of the altered tidal asymmetry.  相似文献   

15.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The morphology of the Yangtze Estuary has changed substantially at decadal time scales in response to natural processes, local human interference and reduced sediment supply. Due to its high sediment load, the morphodynamic response time of the estuary is short, providing a valuable semi-natural system to evaluate large-scale estuarine morphodynamic responses to interference. Previous studies primarily addressed local morphologic changes within the estuary, but since an overall sediment balance is missing, it remains unclear whether the estuary as a whole has shifted from sedimentation to erosion in response to reduced riverine sediment supply (e.g. resulting from construction of the Three Gorges Dam). In this paper we examine the morphological changes of two large shoals in the mouth zone (i.e. the Hengsha flat and the Jiuduan shoal) using bathymetric data collected between 1953 and 2016 and a series of satellite images. We observe that the two shoals accreted at different rates before 2010 but reverted to erosion thereafter. Human activities such as dredging and dumping contribute to erosion, masking the impacts of sediment source reduction. The effects of local human intervention (such as the construction of a navigation channel) are instantaneous and are likely to have already resulted in new dynamic equilibrium conditions. The morphodynamic response time of the mouth zone to riverine sediment decrease is further suggested to be >30 years (starting from the mid-1980s). Accounting for the different adaptation time scales of various human activities is essential when interpreting morphodynamic changes in large-scale estuaries and deltas. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
The present contribution considers the dynamics of beaches occupied by outcropping/buried beachrocks, i.e. hard coastal formations consisting of beach material lithified by in situ precipitated carbonate cements. The dynamics of a Greek microtidal beach with beachrocks (Vatera, Lesbos) are examined through the collection and analysis of morphological and sedimentary field data, a 2-D nearshore hydrodynamic model and a specially constructed 1-D morphodynamic model. The results showed that the beachrock-occupied part of the beach is characterised by distinctive morphodynamics as: (i) its beachface is associated with large slopes; (ii) there is a good spatial correlation between the sub-aerial and shallow submerged mean beach profile and the buried/outcropping upper beachrock surface; and (iii) the seaward margins of the submerged beachrock outcrops are always associated with a ‘scour step’ i.e. a submerged cliff. The results also showed that beachrock outcrops can bias cross-shore sediment exchanges by impeding onshore transport due to the presence of the scour step. In this sense, beachrock outcrops may be considered as offshore transport ‘conduits’ for the beach sediments. A conceptual model of beach sediment transport, based on the field data and the hydrodynamic modelling is proposed. According to this model, fresh beach material from adjacent terrestrial sources is transported alongshore, towards the central part of the embayment, where a littoral transport convergence zone occurs under most wave conditions. There, the laterally supplied sediments are lost offshore.  相似文献   

18.
Soil erosion processes have been studied intensively throughout the last decades and rates have been measured at the plot scale as well as at larger scales. However, the relevance of this knowledge for the modelling of long-term landscape evolution remains a topic of considerable debate. Some authors state that measurements of current rates are irrelevant to landscape evolution over a longer time span, as they are inconsistent with some fundamental characteristics of landscapes, such as the fact that the long-term sediment delivery ratio needs to be equal to 1 and that extrapolation of current rates would imply that all soils in Europe should have disappeared by now (e.g. Parsons, A.J., Wainwright, J., Brazier, R.E., Powell, D.M., 2006. Is sediment delivery a fallacy? Earth Surface Processes and Landforms 31, 1325–1328). In this study, we investigate if and to what extent estimates of long-term erosion rates are consistent with information obtained over much shorter time spans for the Loam Belt of Belgium.In a first step, observed short-term and long-term patterns in the Belgian loess area are compared statistically by classifying the study area into landscape element classes and comparing average erosion values per class. This analysis shows that the erosion intensities on the two temporal scales are of the same order of magnitude for each landscape element class. Next, the spatially distributed model WaTEM LT (Water and Tillage Erosion Model Long Term) is calibrated based on the available short-term data by optimising average erosion values for the same landscape element classes. Finally, the calibrated model is used to simulate long-term landform evolution, and is validated using long-term data based on soil profile truncation. We found that the model allows simulating landscape evolution on a millennial time scale using information derived from short-term erosion and deposition data. However, it is important that land use is taken into account for the calibration in order to obtain realistic patterns on a longer time scale. Our analysis shows that, at least for the study area considered, data obtained on erosion and deposition rates over various temporal scales have the same orders of magnitude, thereby demonstrating that measurements of current rates of processes can be highly relevant for interpreting long-term landscape evolution.  相似文献   

19.
Beach erosion poses significant threat to small island economies which are generally highly dependent on coastal tourism. This work investigates the evolution of the low-lying sandy coast of Boa Vista through an integrated characterization of coastline and shoreline indicators (over the past four decades) based on aerial imagery. It was found that tandem use of the two indicators was important to obtain a reliable perspective of the Boa Vista low-lying coastal evolution across a wide range of coastal environments. Results indicate that between 1968 and 2010 the coast was relatively stable, although some spatial variability was recognized. The largest changes were observed at the tips of embayed beaches and a clear coastal progradation was found at the southern (downwind) coastal sectors. Coastal evolution has been dominated by sediment budget and the results put in evidence the sedimentary connections between the beaches across the island, either through bypass and overpass processes. Findings show that understanding coastal evolution at low-lying islands should be supported on island-scale observations, being the only scale capable to capture the sedimentary connections between beach systems, that often control coastal evolution. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes the details of a quasi-three-dimensional model (3DBANK), which has been developed to investigate medium and long-term morphological evolution and development of offshore sandbanks. The model is based on a three-dimensional tidal module using the Galerkin-eigenfunction method, but also includes four sub-modules to compute: the instantaneous bedform characteristics from which the temporal and spatial variations of the shear stresses at the sea bed can be derived; the suspended sediment concentration through the water column; the bed-load and suspended sediment fluxes at a point-in-plan; and the resulting morphological changes, respectively. The model also includes the effects of the wind and waves at the sea surface, as well as the wave–current interaction (WCI), and operates with full hydrodynamic and morphodynamic interaction. The components of the model were tested against laboratory and field data, and the complete model was then applied to Middlekerke Bank off the Flemish coast where extensive field measurements were taken during the European Community (EC) funded Circulation and Sediment Transport Around Banks (CSTAB) Project using various advanced instrumentation including STABLE and HF OSCR. Comparisons of the model results with the field measurements and observations show that the model is capable of reproducing the current and wave-induced bedforms, bed roughness, tidal currents and tidal residuals around the sandbank satisfactorily, and can be used to study the long-term sandbank evolution under various offshore conditions. This paper, however, focuses on the hydrodynamic aspects of the model, while the details of the morphological components will be given in a companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号