首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At present, the seismic vulnerability assessment of reinforced concrete (RC) buildings is made considering fixed base conditions; moreover, the mechanical properties of the building remain intact in time. In this study we investigate whether these two fundamental hypotheses are sound as aging and soil-structure interaction (SSI) effects might play a crucial role in the seismic fragility analysis of RC structures. Among the various aging processes, we consider the chloride-induced corrosion based on probabilistic modeling of corrosion initiation time and corrosion rate. Different corrosion aspects are considered in the analysis including the loss of reinforcement cross-sectional area, the degradation of concrete cover and the reduction of steel ultimate deformation. SSI is modeled by applying the direct one-step approach, which accounts simultaneously for inertial and kinematic interactions. Two-dimensional incremental dynamic analysis is performed to assess the seismic performance of the initial uncorroded ( \(\hbox {t}=0\) years) and corroded ( \(\hbox {t}=50\) years) RC moment resisting frame structures, having been designed with different seismic code levels. The time-dependent fragility functions are derived in terms of the spectral acceleration at the fundamental mode of the structure \(\hbox {S}_{\mathrm{a}}(\hbox {T}_{1}\) , 5 %) and the outcropping peak ground acceleration for the immediate occupancy and collapse prevention limit states. Results show an overall increase in seismic vulnerability over time due to corrosion highlighting the important influence of deterioration due to aging effects on the structural behavior. Moreover, the consideration of SSI and site effects may significantly alter the expected structural performance leading to higher vulnerability values.  相似文献   

2.
The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earthquakes of magnitudes 4.6 and 5.2 M \(_\mathrm{w}\) , causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earthquake by means of a seismic index \(I_{v}\) that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from \(I_{v}\) \(\,=\,\) 1 (collapse) to about \(I_{v}\) \(\,=\,\) 0.5 (moderate/severe damage).  相似文献   

3.
The seismic behaviour of caisson foundations supporting typical bridge piers is analysed with 3D finite elements, with due consideration to soil and interface nonlinearities. Single-degree-of freedom oscillators of varying mass and height, simulating heavily and lightly loaded bridge piers, founded on similar caissons are studied. Four different combinations of the static ( $\text{ FS }_\mathrm{V}$ FS V ) and seismic ( $\text{ FS }_\mathrm{E}$ FS E ) factors of safety are examined: (1) a lightly loaded ( $\text{ FS }_\mathrm{V}= 5$ FS V = 5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson, (2) a lightly loaded seismically over-designed ( $\text{ FS }_\mathrm{E} >1$ FS E > 1 ) caisson, (3) a heavily loaded ( $\text{ FS }_\mathrm{V} = 2.5$ FS V = 2.5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson and (4) a heavily loaded seismically over-designed caisson. The analysis is performed with use of seismic records appropriately modified so that the effective response periods (due to soil-structure-interaction effects) of the studied systems correspond to the same spectral acceleration, thus allowing their inelastic seismic performance to be compared on a fair basis. Key performance measures of the systems are then contrasted, such as: accelerations, displacements, rotations and settlements. It is shown that the performance of the lightly loaded seismically under-designed caisson is advantageous: not only does it reduce significantly the seismic load to the superstructure, but it also produces minimal residual displacements of the foundation. For heavily loaded foundations, however ( $\text{ FS }_{V} = 2.5$ FS V = 2.5 ), the performance of the two systems (over and under designed) is similar.  相似文献   

4.
Fragility curves for risk-targeted seismic design maps   总被引:1,自引:0,他引:1  
Seismic design using maps based on “risk-targeting” would lead to an annual probability of attaining or exceeding a certain damage state that is uniform over an entire territory. These maps are based on convolving seismic hazard curves from a standard probabilistic analysis with the derivative of fragility curves expressing the chance for a code-designed structure to attain or exceed a certain damage state given a level of input motion, e.g. peak ground acceleration (PGA). There are few published fragility curves for structures respecting the Eurocodes (ECs, principally EC8 for seismic design) that can be used for the development of risk-targeted design maps for Europe. In this article a set of fragility curves for a regular three-storey reinforced-concrete building designed using EC2 and EC8 for medium ductility and increasing levels of design acceleration \((\hbox {a}_\mathrm{g})\) is developed. These curves show that structures designed using EC8 against PGAs up to about 1 m/s \(^{2}\) have similar fragilities to those that respect only EC2 (although this conclusion may not hold for irregular buildings, other geometries or materials). From these curves, the probability of yielding for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 0.14 ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 0.85 ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) whereas the probability of collapse for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 1.7 \(\times 10^{-7}\) ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 1.0 \(\times 10^{-5}\) ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) .  相似文献   

5.
The Lorca Basin has been the object of recent research aimed at studying the phenomena of earthquake-induced landslides and its assessment in the frame of different seismic scenarios. However, it has not been until the 11th May 2011 Lorca earthquakes when it has been possible to conduct a systematic approach to the problem. In this paper we present an inventory of slope instabilities triggered by the Lorca earthquakes which comprises more than 100 cases, mainly rock and soil falls of small size (1–100  \(\hbox {m}^{3}\) ). The distribution of these instabilities is here compared to two different earthquake-triggered landslide hazard maps: one considering the occurrence of the most probable earthquake for a 475-years return period in the Lorca Basin \((\hbox {M}_{\mathrm{w}}=5.0)\) based on both low- and high-resolution digital elevation model (DEM); and a second one matching the occurrence of the \(\hbox {M}_{\mathrm{w}}=5.2\) 2011 Lorca earthquake, which was performed using the higher resolution DEM. The most frequent Newmark displacements related to the slope failures triggered by the 2011 Lorca earthquakes are lower than 2 cm in both the hazard scenarios considered. Additionally, the predicted Newmark displacements were correlated to the inventory of slope instabilities to develop a probability of failure equation. The fit seems to be very good since most of the mapped slope failures are located on the higher probability areas. The probability of slope failure in the Lorca Basin for a seismic event similar to the \(\hbox {M}_{\mathrm{w}}\) 5.2 2011 Lorca earthquake can be considered as very low (0–4 %).  相似文献   

6.
This paper describes a new method for the evaluation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ of uncoupled torsional to lateral frequencies in real multi-storey buildings. The above-mentioned parameters greatly affect the lateral-to-torsional coupling of the response of asymmetric systems and thus are of paramount importance in the assessment of the in-plan irregularity of buildings. The proposed method, which is a generalization of that suggested by Calderoni et al. (Earthq Spectra 18(2):219–231, 2002), allows the calculation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ from the structural response to arbitrary distributions of forces and torsional couples. The effectiveness of the method is validated on some regularly and non-regularly asymmetric buildings characterised by different in-plan irregularity. The analyses demonstrate that the results of the method are rigorous in the case of regularly asymmetric systems and only slightly depend upon the heightwise distribution of the forces in the case of non-regularly asymmetric systems. Finally, the values of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ resulting from the proposed method are compared to those obtained by means of the procedure suggested by Makarios and Anastassiadis in (Struct Des Tall Spec Build 7(1):33–55, 1998a; Struct Des Tall Spec Build 7(1):57–71, 1998b) .  相似文献   

7.
The Lorca 2011 seismic series was recorded by an unprecedented set of high quality on scale broadband seismograms and strong motion accelerograms. The waveforms from permanent and temporary broadband seismic networks deployed in the region by different institutions allowed to invert regional moment tensor for the fore, main and largest aftershock of the complete seismic sequence. Using double-difference algorithm we have performed a precise relocation of the seismic series, where body wave travel times from strong ground motion accelerograms were included in the data set. Regional moment tensor inversion for the three main events show similar oblique-reverse faulting regime with a northeast-southwest fault orientation. The scalar seismic moment, moment magnitude and focal depth retrieved from the inversion yield the following values for each event: \(\hbox {Mo}=6.5\times 10^{16}\) Nm (Mw = 5.2) for the mainshock, \(\hbox {Mo}= 9.6 \times 10^{15}\) Nm (Mw = 4.6) for the foreshock and \(\hbox {Mo}=7.3\times 10^{14}\) Nm (Mw = 3.9) for the large aftershock. The centroid depths range between 4 and 6 km. The double-difference relocation of the seismic series shows significant epicentral differences with the preliminary routine location. The epicentral solutions given by this relocation show a seismic sequence distributed following a NE–SW strike, subparallel to the Alhama de Murcia fault and compatible with the faulting parameters inverted from the moment tensor analysis. The hypocenters of the series generate a subvertical trend in depth distribution, being concentrated between 2 and 6 km. The depth distribution of the main events, which range from 4.6 to 5.5 km, is in good relationship with the faulting and depth parameters deduced from the moment tensor inversion technique. The regional moment tensor solutions for the three largest earthquakes, the epicentral distribution and the focal depths show good relationship with the surface geometry and tectonic regime of the Alhama de Murcia fault. The stress drop deduced for the mainshock gives a value ranging between 58 and 85 bars, which does not support the idea of a high stress drop release as a main factor contributing to the high ground acceleration recorded at Lorca. The PGA values observed at Lorca, which contributed to the high damage independently of structural deficiencies, could be generated mainly by shallowness and proximity to the seismic source together with a directivity effect in the seismic radiation.  相似文献   

8.
In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events $\hbox {M}_{\mathrm{W}}\approx 3$ . The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews (1986), the seismic moment and the first estimate of the corner frequency, $f_{0}$ , derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with $\hbox {M}_{\mathrm{W}}\ge 3$ . The estimates of $f_{0}$ are less reliable. The results show a scatter, principally for small events with $\hbox {M}_{\mathrm{W}}\le 3$ , probably due to site effects and inaccurate locations.  相似文献   

9.
A damaging seismic sequence hit a wide area mainly located in the Emilia-Romagna region (Northern Italy) during 2012 with several events of local magnitude \(\hbox {M}_\mathrm{l} \ge 5\) , among which the \(\hbox {M}_\mathrm{l}\) 5.9 May 20 and the \(\hbox {M}_\mathrm{l}\) 5.8 May 29 were the main events. Thanks to the presence of a permanent accelerometric station very close to the epicentre and to the temporary installations performed in the aftermath of the first shock, a large number of strong motion recordings are available, on the basis of which, we compared the recorded signals with the values provided by the current Italian seismic regulations, and we observed several differences with respect to horizontal components when the simplified approach for site conditions (based on Vs30 classes) is used. On the contrary, when using the more accurate approach based on the local seismic response, we generally obtain a much better agreement, at least in the frequency range corresponding to a quarter wavelength comparable with the depth of the available subsoil data. Some unresolved questions still remain, such as the low frequency behaviour ( \(<\) 1 Hz) that could be due either to complex propagation at depth larger than the one presently investigated or to near source effects, and the behaviour of vertical spectra whose recorded/code difference is too large to be explained with the information currently available.  相似文献   

10.
In the last two decades, south-central Europe and the Eastern Alps have been widely explored by many seismic refraction experiments (e.g., CELEBRATION 2000, ALP 2002, SUDETES 2003). Although quite detailed images are available along linear profiles, a comprehensive, three-dimensional crustal model of the region is still missing. This limitation makes this region a weak spot in continental-wide comprehensive representations of crustal structure. To improve on this situation, we select and collect 37 published active-source seismic lines in this region. After geo-referencing each line, we sample them along vertical profiles—every 50?km or less along the line—and derive P-wave velocities in a stack of homogeneous layers (separated by discontinuities: depth of crystalline basement, top of lower crust, and Moho). We finally merge the information using geostatistical methods, and infer S-wave velocity and density using empirical scaling relations. We present here the resulting crustal model for a region encompassing the Eastern Alps, Dinarides, Pannonian basin, Western Carpathians and Bohemian Massif, covering the region within $45^{\circ}\text{--}51^{\circ}\hbox{N}$ and $11^{\circ} \text{--} 22^{\circ}\hbox{E}$ with a resolution of $0.2^{\circ} \times 0.2^{\circ}.$ We are also able to extend and update the map of Moho depth in a wider region within $35^{\circ}\text{--}51^{\circ}\hbox{N}$ and $12^{\circ}\text{--}45^{\circ}\hbox{E},$ gathering Moho values from the collected seismic lines, other published dataset and using the European plate reference EPcrust as a background. All the digitized profiles and the resulting model are available online.  相似文献   

11.
Many researches have been conducted on the health influence of Particle Matter with diameters less than 2.5 microns (PM \(_{2.5}\) ). There are also some researches on the cause of PM \(_{2.5}\) . However, such research generally focuses on the economic and political aspect of the environment issue. In this paper, a data-analysis approach of the PM \(_{2.5}\) issue is raised to offer a new viewpoint of this problem. The applied method extracts the relations of air quality system record as a relation map, which illustrates the influence among the parameters in a graph. The method successfully fitted the weather record, and derived from it the influencers of PM \(_{2.5}\) . The result shows that the average temperature, average barometric pressure and concentration of Ozone are all factors that have an influence on the concentration of PM \(_{2.5}.\) A short justification of it is also provided.  相似文献   

12.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

13.
This article presents the latest generation of ground-motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases. The models present a number of novelties with respect to previous generations of models (Ambraseys et al. in Earthq Eng Struct Dyn 25:371–400, 1996, Bull Earthq Eng 3:1–53, 2005; Bommer et al. in Bull Earthq Eng 1:171–203, 2003; Akkar and Bommer in Seismol Res Lett 81:195–206, 2010), namely: inclusion of a nonlinear site amplification function that is a function of $\text{ V }_\mathrm{S30}$ and reference peak ground acceleration on rock; extension of the magnitude range of applicability of the model down to $\text{ M }_\mathrm{w}$ 4; extension of the distance range of applicability out to 200 km; extension to shorter and longer periods (down to 0.01 s and up to 4 s); and consistent models for both point-source (epicentral, $\text{ R }_\mathrm{epi}$ , and hypocentral distance, $\text{ R }_\mathrm{hyp}$ ) and finite-fault (distance to the surface projection of the rupture, $\text{ R }_\mathrm{JB}$ ) distance metrics. In addition, data from more than 1.5 times as many earthquakes, compared to previous pan-European models, have been used, leading to regressions based on approximately twice as many records in total. The metadata of these records have been carefully compiled and reappraised in recent European projects. These improvements lead to more robust ground-motion prediction equations than have previously been published for shallow (focal depths less than 30 km) crustal earthquakes in Europe and the Middle East. We conclude with suggestions for the application of the equations to seismic hazard assessments in Europe and the Middle East within a logic-tree framework to capture epistemic uncertainty.  相似文献   

14.
In a companion article Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4, 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) present a new ground-motion prediction equation (GMPE) for estimating 5 %-damped horizontal pseudo-acceleration spectral (PSA) ordinates for shallow active crustal regions in Europe and the Middle East. This study provides a supplementary viscous damping model to modify 5 %-damped horizontal spectral ordinates of Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) for damping ratios ranging from 1 to 50 %. The paper also presents another damping model for scaling 5 %-damped vertical spectral ordinates that can be estimated from the vertical-to-horizontal (V/H) spectral ratio GMPE that is also developed within the context of this study. For consistency in engineering applications, the horizontal and vertical damping models cover the same damping ratios as noted above. The article concludes by introducing period-dependent correlation coefficients to compute horizontal and vertical conditional mean spectra (Baker in J Struct Eng 137:322–331, 2011). The applicability range of the presented models is the same as of the horizontal GMPE proposed by Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b): as for spectral periods $0.01 \hbox { s}\le \,\hbox {T}\le \,4\hbox { s}$ as well as PGA and PGV for V/H model; and in terms of seismological estimator parameters $4\le \hbox {M}_\mathrm{w} \le 8, \hbox { R} \le 200 \hbox { km}, 150\hbox { m/s}\le \hbox { V}_\mathrm{S30}\le $ 1,200 m/s, for reverse, normal and strike-slip faults. The source-to-site distance measures that can be used in the computations are epicentral $(\hbox {R}_\mathrm{epi})$ , hypocentral $(\hbox {R}_\mathrm{hyp})$ and Joyner–Boore $(\hbox {R}_\mathrm{JB})$ distances. The implementation of the proposed GMPEs will facilitate site-specific adjustments of the spectral amplitudes predicted from probabilistic seismic hazard assessment in Europe and the Middle East region. They can also help expressing the site-specific design ground motion in several formats. The consistency of the proposed models together with the Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) GMPE may be advantageous for future modifications in the ground-motion definition in Eurocode 8 (CEN in Eurocode 8, Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard NF EN 1998-1, Brussels, 2004).  相似文献   

15.
Ground motion prediction equations (GMPEs) have a major impact on seismic hazard estimates, because they control the predicted amplitudes of ground shaking. The prediction of ground-motion amplitudes due to mega-thrust earthquakes in subduction zones has been hampered by a paucity of empirical ground-motion data for the very large magnitudes (moment magnitude (M) $>$ 7) of most interest to hazard analysis. Recent data from Tohoku M9.0 2011 earthquake are important in this regard, as this is the largest well-recorded subduction event, and the only such event with sufficient data to enable a clear separation of the overall source, path and site effects. In this study, we use strong-ground-motion records from the M9 Tohoku event to derive an event-specific GMPE. We then extend this M9 GMPE to represent the shaking from other M $>$ 7 interface events in Japan by adjusting the source term. We focus on events in Japan to reduce ambiguity that results when combining data in different regions having different source, path and site effect attributes. Source levels (adjustment factors) for other Japanese events are determined as the average residuals of ground-motions with respect to the Tohoku GMPE, keeping all other coefficients fixed. The mean residuals (source terms) scale most steeply with magnitude at the lower frequencies; this is in accord with expectations based on overall source-scaling concepts. Interpolating source terms over the magnitude range of 7.0–9.0, we produce a GMPE for large interface events of M7–M9, for NEHRP B/C boundary site conditions (time-averaged shear-wave velocity of 760 m/s over the top 30 m) in both fore-arc and back-arc regions of Japan. We show how these equations may be adjusted to account for the deeper soil profiles (for the same value of $\hbox {V}_\mathrm{S30})$ in western North America. The proposed GMPE predicts lower motions at very long periods, higher motions at short periods, and similar motions at intermediate periods, relative to the simulation-based GMPE model of Atkinson and Macias (2009) for the Cascadia subduction zone.  相似文献   

16.
Performance of masonry buildings during the Emilia 2012 earthquake   总被引:2,自引:2,他引:0  
The earthquake sequence started on May \(20\) th 2012 in Emilia (Italy) affected a region where masonry constructions represent a large part of the existing building stock and the construction of new modern masonry buildings is a common practice. The paper is focused on the performance of common architectural configurations, typical for residential or business use. The large majority of old masonry buildings is made of fired clay bricks. The seismic performance of these buildings is particularly interesting since major past earthquakes in Italy affected areas with mainly stone masonry structures. Apart from examples showing systematic or peculiar structural deficiencies governing the vulnerability of several buildings, the overall seismic performance of these structures to repeated shaking, with PGA as large as 0.25–0.3 g was rather good, despite the major part of them were only conceived for carrying vertical loads. In fact, seismic design is mandatory in the area only since 2003. Modern low-rise masonry buildings erected after this date and incorporating seismic design and proper detailing resulted in most cases practically undamaged. The examples reported in the paper allow an evaluation of the superior performance of seismically designed modern masonry buildings in comparison to older ones.  相似文献   

17.
18.
On the selection of GMPEs for Vrancea subcrustal seismic source   总被引:2,自引:0,他引:2  
The Vrancea subcrustal seismic source is characterized by large magnitude ( $M_{W} \ge 7$ ) intermediate-depth earthquakes that occur two or three times during a century on average. In this study several procedures are used to grade four candidate ground motion prediction equations proposed for Vrancea source in the SHARE project. In the work of Delavaud et al. (J Seismol 16(3):451–473, 2012) four ground motion prediction models developed for subduction zones (Zhao et al. in Bull Seism Soc Am 96(3):898–913, 2006; Atkinson and Boore in Bull Seism Soc Am 93(4):1703–1729, 2003; Youngs et al. in Seism Res Lett 68(1):58–73, 1997; Lin and Lee in Bull Seism Soc Am 98(1):220–240, 2008) are suggested as suitable for Vrancea subcrustal seismic source. The paper presents the appropriateness analysis of the four suggested ground motion prediction equations done using a dataset of 109 triaxial accelerograms recorded during seven Vrancea seismic events with moment magnitude $M_{W}$ between 5.4 and 7.4, occurred in the past 35 years. The strong ground motions were recorded in Romania, as well as in Bulgaria, Republic of Moldova and Serbia. Based on the ground motion dataset several goodness-of-fit measures are used in order to quantify how well the selected models match with the recorded data. The compatibility of the four ground motion prediction models with respect to magnitude scaling and distance scaling implied by strong ground motion dataset is investigated as well. The analyses show that the Youngs et al. (Seism Res Lett 68(1):58–73, 1997) and Zhao et al. (Bull Seism Soc Am 96(3):898–913, 2006) ground motion prediction models have a better fit with the data and can be candidate models for Probabilistic Seismic Hazard Assessment.  相似文献   

19.
A complex seismic sequence characterised by two thrust earthquakes of magnitudes M \(_\mathrm{L}\) 5.9 and M \(_\mathrm{L}\) 5.8 occurred on May 20 and 29, 2012, respectively, and activated the central portion of the Ferrara Arc structure beneath the Po Plain in northern Italy. The sequence, referred to as Emilia 2012, was recorded by the Italian Strong Motion Network, the Irpinia Network, the Friuli Venezia Giulia Network and 15 temporary stations installed by the Civil Protection Department. In this study, we compile and analyse a large dataset that contains 3,273 waveforms from 37 \(M_\mathrm{L} \ge 4.0\) seismic events. The main aim of this paper is to characterise the ground motion induced by the Emilia 2012 seismic sequence and compare it with other data in the Italian strong motion database and to the recent Ground Motion Prediction Equations (GMPEs) developed for northern Italy, all of Italy and Europe. This is achieved by (1) the computation and analysis of the strong motion parameters of the entire Emilia Strong Motion Dataset (ESMD) and (2) a comprehensive investigation of the May 29 event recordings in terms of time–frequency analysis, the ground motion parameters and the response spectra. This detailed analysis was made possible by the temporary Civil Protection Department stations that were installed soon after the May 20 event at several municipalities in the epicentral area. Most of the recordings are characterised by low-frequency content and long durations, which is a result of the thick sedimentary cover that is typical of the Po Plain. The distributions of the observed horizontal peak ground accelerations and velocities (PGAs and PGVs) with distance are generally consistent with the GMPEs. This is particularly true for the data from M \(_\mathrm{L} \ge \) 5.0 (M \(_\mathrm{W}\ge \) 5.0) events, though the data are scattered at distances beyond approximately 60–70 km and show faster attenuation than the European GMPEs. The horizontal components for the May 29 event at two near-fault stations (Mirandola and San Felice sul Panaro) are overestimated by all of the analysed GMPEs. In contrast, the vertical components, which played an important role in the shaking near the source, are underestimated. The May 29 event produced intense velocity pulses on the horizontal components and the highest peak ground acceleration ever recorded in Italy on the vertical component of the Mirandola near-fault station. The ground motion recordings contained in the ESMD significantly enrich the Italian strong motion database. They contribute new information about (1) the possibility of exceeding the largest recorded PGA in Italy, (2) the development of a spectral design that takes into account the role of the vertical component and the extreme variability of the near-fault ground shaking, and (3) the characterisation of the ground motions in deep sedimentary basins.  相似文献   

20.
On Sunday, October 23rd, 2011, the Van province, in the Eastern Turkey, was stricken by a magnitude $\text{ M}_{\mathrm{w}} \!=\! 7.1$ earthquake. The maximum horizontal peak ground acceleration, i.e. 0.182 g, was measured from the seismic station in Muradiye, at about 40 km from the epicenter. Several $\text{ M}_\mathrm{w} > 5.7$ strong motion aftershocks were recorded in November 2011. The exceptionally rich sequence of ground motions was due to the dense seismotectonic activity of the Eastern Turkey, where many active historical faults exist and newly generated can also be found because of the ongoing continental collision between the Arabian and the Eurasian Plates. The 2011 Van earthquake sequence caused 644 casualties, 1966 injuries with 252 rescues; the total economic losses are estimated at around 1 billion US dollars. The present paper deals with the seismological and structural damage assessment of two major seismic events and aftershock sequences in Van region; special emphasis is on the findings of the site investigations performed in the aftermath of the major seismic event. The performed investigation has shown that there is substantial field evidence demonstrating that the losses generated to the local social communities were caused by typical structural and non-structural deficiencies that have been surveyed in the past in several moderate-to-major earthquakes worldwide, especially in poor countries. Comprehensive numerical simulations were also carried out to assess the characteristics of the strong motion records and their effects on existing representative building type of structures in the earthquake-affected region. It was found that the local building stock is highly vulnerable and requires urgent major structural interventions for seismic strengthening. A cost-efficient retrofitting scheme is however not straightforward. It should be a trade-off between two competing aspects: the use of innovative materials and technologies on one hand, and the low-quality of the workmanships and lack of adequate quality control during construction phase, which are available in the Van province, on the other hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号