首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex seismic sequence characterised by two thrust earthquakes of magnitudes M \(_\mathrm{L}\) 5.9 and M \(_\mathrm{L}\) 5.8 occurred on May 20 and 29, 2012, respectively, and activated the central portion of the Ferrara Arc structure beneath the Po Plain in northern Italy. The sequence, referred to as Emilia 2012, was recorded by the Italian Strong Motion Network, the Irpinia Network, the Friuli Venezia Giulia Network and 15 temporary stations installed by the Civil Protection Department. In this study, we compile and analyse a large dataset that contains 3,273 waveforms from 37 \(M_\mathrm{L} \ge 4.0\) seismic events. The main aim of this paper is to characterise the ground motion induced by the Emilia 2012 seismic sequence and compare it with other data in the Italian strong motion database and to the recent Ground Motion Prediction Equations (GMPEs) developed for northern Italy, all of Italy and Europe. This is achieved by (1) the computation and analysis of the strong motion parameters of the entire Emilia Strong Motion Dataset (ESMD) and (2) a comprehensive investigation of the May 29 event recordings in terms of time–frequency analysis, the ground motion parameters and the response spectra. This detailed analysis was made possible by the temporary Civil Protection Department stations that were installed soon after the May 20 event at several municipalities in the epicentral area. Most of the recordings are characterised by low-frequency content and long durations, which is a result of the thick sedimentary cover that is typical of the Po Plain. The distributions of the observed horizontal peak ground accelerations and velocities (PGAs and PGVs) with distance are generally consistent with the GMPEs. This is particularly true for the data from M \(_\mathrm{L} \ge \) 5.0 (M \(_\mathrm{W}\ge \) 5.0) events, though the data are scattered at distances beyond approximately 60–70 km and show faster attenuation than the European GMPEs. The horizontal components for the May 29 event at two near-fault stations (Mirandola and San Felice sul Panaro) are overestimated by all of the analysed GMPEs. In contrast, the vertical components, which played an important role in the shaking near the source, are underestimated. The May 29 event produced intense velocity pulses on the horizontal components and the highest peak ground acceleration ever recorded in Italy on the vertical component of the Mirandola near-fault station. The ground motion recordings contained in the ESMD significantly enrich the Italian strong motion database. They contribute new information about (1) the possibility of exceeding the largest recorded PGA in Italy, (2) the development of a spectral design that takes into account the role of the vertical component and the extreme variability of the near-fault ground shaking, and (3) the characterisation of the ground motions in deep sedimentary basins.  相似文献   

2.
The ShakeMap software automatically generates maps of the peak ground motion parameters (shakemaps) and of instrumental intensity soon after an earthquake. Recorded data are fundamental to obtaining accurate results. In case observations are not available, ShakeMap relies on ground motion predictive equations, but due to unmodelled site conditions or finite fault effects, large uncertainties may appear, mainly in the near-source area where damage is relevant. In this paper, we aim to account for source effects in ShakeMap by computing synthetics to be used for integrating observations and ground motion predictive equations when near-source data are not available. To be effective, the computation of synthetics, as well as of the finite fault, should be done in near real time. Therefore, we computed rapid synthetic seismograms, by a stochastic approach, including the main fault features that were obtained through inversion of regional and teleseismic data. The rapidity of calculation is linked to a number of assumptions, and simplifications that need testing before the procedure can run in automatic mode. To assess the performance of our procedure, we performed a retrospective validation analysis considered as case study of the M w = 6.3 earthquake, which occurred in central Italy on April 6, 2009. In that case, the first shakemaps, generated a few minutes after the earthquake, suffered large uncertainties on ground motion estimates in an area closer to the epicenter due to the lack of near-field data. To verify our approach, we recomputed shakemaps for the L’Aquila earthquake, integrating data available soon after the earthquake at different elapse times with synthetics, and we compared our shaking map with the final shakemap, obtained when all the data were available. Our analysis evidences that (1) when near-source data are missing, the integration of real data with synthetics reduces discrepancies between computed and actual ground shaking maps, mainly in the near-field zone where the damage is relevant and (2) the approach that we adopted is promising in trying to reduce such discrepancies and could be easily implemented in ShakeMap, but some a priori calibration is necessary before running in an automatic mode.  相似文献   

3.
Local site effect microzonation of Lorca town (SE Spain)   总被引:1,自引:0,他引:1  
Local site effect assessment based on subsurface ground conditions is often the key to evaluate urban seismic hazard. The site effect evaluation in Lorca town (south-eastern Spain) started with a classification of urban geology through the geological mapping at scale 1:10,000 and the use of geotechnical data and geophysical surveys. The 17 geological formations identified were classified into 5 geological/seismic formations according to their seismic amplification capacity obtained from ambient vibration measurements as well as from simultaneous strong motion records. The shear-wave velocity structure of each geological/seismic formation was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. Nakamura’s method was applied to determine a predominant period distribution map. The spectral amplification factors were fourfold the values recorded in a reference hard-rock site. Finally, the capability of this study for explaining the damage distribution caused by the May 11th, 2011 Lorca destructive earthquake (Mw \(=\) 5.2) was examined. The methods used in this work are of assistance to evaluate ground amplification phenomena in urban areas of complex geology as Lorca town due to future earthquakes with applicability on urban seismic risk management.  相似文献   

4.
A systematic analysis was conducted of the different variability components that affect the prediction of $\text{ log }_{10}(PSA)$ (i.e., Pseudo-Spectral Acceleration) ordinates on (mostly) deep sedimentary soil sites using a sizable set of strong motion data recorded in the strong earthquake sequences of 2010 and 2012 in the Canterbury region of New Zealand. Following recent, well established approaches of residual analysis of ground motion predictions, as well as recent GMPEs based on a global dataset, it was found that the event-corrected single-station standard deviation (“sigma”) is strongly decreased, for all selected stations, with respect to the uncorrected sigma. Likewise, the event-corrected intraevent sigma estimated for the entire dataset is significantly reduced compared to the standard deviation associated to ground motion prediction models, i.e. the “ergodic” sigma, for all spectral periods. The event-corrected sigma values for the present dataset are surprisingly consistent with those recently derived using KiK-Net strong motion data from Japan and those by Boore and Atkinson (Earthq Spectra 34(1):99–138, 2008) GMPE, and remain fairly constant with respect to the spectral period at about $0.15\sim 0.2$ . An interpretation was provided of the physical meaning of the site correction term ( ${\delta }S2S)_{s}$ indicating a plausible correlation with prevailing geological conditions in the site area.  相似文献   

5.
Estimates of the earthquake ground motion intensity over a geographical area have multiple uses, that is, emergency management, civil protection and seismic fragility assessment. In particular, with reference to fragility assessment, it is of interest to have estimates of the values of different ground-motion intensity measures in order to correlate them with the observed damage. To this purpose, the present paper uses a procedure recently proposed in the literature to estimate the ground-motion intensity for the 2012 Emilia mainshocks, considering different ground motion intensity measures and directionality effects. Ground motion prediction equations based on different site effect models, and spatial correlation models are calibrated for the Emilia earthquakes. The paper discusses the accuracy of the shakemaps obtained using the different soil effect models considered and presents the obtained shakemaps as supplementary material. The procedure presented in the paper is aimed at providing ground motion intensity values for seismic fragility assessment and is not intended as a tool to estimate shakemaps for rapid emergency assessment.  相似文献   

6.
On the selection of GMPEs for Vrancea subcrustal seismic source   总被引:2,自引:0,他引:2  
The Vrancea subcrustal seismic source is characterized by large magnitude ( $M_{W} \ge 7$ ) intermediate-depth earthquakes that occur two or three times during a century on average. In this study several procedures are used to grade four candidate ground motion prediction equations proposed for Vrancea source in the SHARE project. In the work of Delavaud et al. (J Seismol 16(3):451–473, 2012) four ground motion prediction models developed for subduction zones (Zhao et al. in Bull Seism Soc Am 96(3):898–913, 2006; Atkinson and Boore in Bull Seism Soc Am 93(4):1703–1729, 2003; Youngs et al. in Seism Res Lett 68(1):58–73, 1997; Lin and Lee in Bull Seism Soc Am 98(1):220–240, 2008) are suggested as suitable for Vrancea subcrustal seismic source. The paper presents the appropriateness analysis of the four suggested ground motion prediction equations done using a dataset of 109 triaxial accelerograms recorded during seven Vrancea seismic events with moment magnitude $M_{W}$ between 5.4 and 7.4, occurred in the past 35 years. The strong ground motions were recorded in Romania, as well as in Bulgaria, Republic of Moldova and Serbia. Based on the ground motion dataset several goodness-of-fit measures are used in order to quantify how well the selected models match with the recorded data. The compatibility of the four ground motion prediction models with respect to magnitude scaling and distance scaling implied by strong ground motion dataset is investigated as well. The analyses show that the Youngs et al. (Seism Res Lett 68(1):58–73, 1997) and Zhao et al. (Bull Seism Soc Am 96(3):898–913, 2006) ground motion prediction models have a better fit with the data and can be candidate models for Probabilistic Seismic Hazard Assessment.  相似文献   

7.
8.
Strong-motion data consisting of peak ground acceleration and velocity and 5 % damped response spectra are presented for 46 earthquakes of the Emilia seismic sequence which occurred in the Po Plain (northern Italy) in 2012. The data were recorded by the OGS temporary network installed close to the town of Ferrara following the main shock of May 20, 2012. Ground-motion peak parameters and spectral responses are compared with the ground-motion prediction equation (GMPE) of Bindi et al. (Bull Earthq Eng 9:1899–1920, 2011) for soft soils and reverse faults. Peak ground accelerations are in general in good agreement with those predicted by GMPE, while predicted peak ground velocities underestimate the observed data, especially for stronger events at more distant stations. The response spectra follow the trend in peak ground velocities, with observed values higher than predicted values at longer periods. This behavior has been interpreted as a site effect due to the deep soft alluvial cover of the Po Plain, which promotes ground motion characterized by a large low-frequency spectral content that is not yet well modeled by the Italian GMPE. A peculiar behavior was shown by the event occurring on June 6, 04:08:33 UTC, \(\hbox {M}=4.5\) , located at the eastern edge of the Po Plain, which produced peak ground accelerations exceeding three times the values estimated by attenuation laws. Such a great discrepancy could be related to post-critically reflected S-waves and multiples from the Moho (SmSM).  相似文献   

9.
A damaging seismic sequence hit a wide area mainly located in the Emilia-Romagna region (Northern Italy) during 2012 with several events of local magnitude \(\hbox {M}_\mathrm{l} \ge 5\) , among which the \(\hbox {M}_\mathrm{l}\) 5.9 May 20 and the \(\hbox {M}_\mathrm{l}\) 5.8 May 29 were the main events. Thanks to the presence of a permanent accelerometric station very close to the epicentre and to the temporary installations performed in the aftermath of the first shock, a large number of strong motion recordings are available, on the basis of which, we compared the recorded signals with the values provided by the current Italian seismic regulations, and we observed several differences with respect to horizontal components when the simplified approach for site conditions (based on Vs30 classes) is used. On the contrary, when using the more accurate approach based on the local seismic response, we generally obtain a much better agreement, at least in the frequency range corresponding to a quarter wavelength comparable with the depth of the available subsoil data. Some unresolved questions still remain, such as the low frequency behaviour ( \(<\) 1 Hz) that could be due either to complex propagation at depth larger than the one presently investigated or to near source effects, and the behaviour of vertical spectra whose recorded/code difference is too large to be explained with the information currently available.  相似文献   

10.
11.
12.
The 23 October 2011 Van (Mw 7.1) earthquake that occurred in Eastern Turkey resulted in heavy damage particularly in the city of Van and town of Ercis. This paper presents ground motion simulations of Van earthquake by using stochastic finite fault method (EXSIM, Motazedian and Atkinson in Bull Seismol Soc Am 95:995–1010, 2005; Boore in Bull Seismol Soc Am 99:3202–3216, 2009) that provides a simple and effective tool to generate high frequency strong motion. The input parameters related to source, path, and site effects are calibrated on the basis of minimizing the error functions between simulations and observations both in time and frequency domain. Validated model parameters are used to produce synthetics in regional extent with the aim of understanding the level and distribution of the ground shaking particularly in the near fault region where no recordings are available within the 40 km of the epicenter. This paper evaluates the effect of two different slip models on ground motion intensity measures over the area of interest and addresses the variability in the near fault region associated with the source effect. The synthetics are compared with the corresponding estimations of ground motion prediction equations by Boore and Atkinson (Earthq Spectra 24:99–138, 2008), Akkar and Bommer (Seismol Res Lett 81:195–206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100:2978–2995, 2010). Our results indicate that despite the limitation of the method for incorporating the directivity effect and inadequate representation of the soil conditions at the individual stations, a satisfactory match between synthetics and observations are obtained both in time and frequency domain. Spatial distributions of the synthetics in regional level also show reasonable correlation with ground motion prediction equations and damage observations.  相似文献   

13.
It has been observed that post-critically reflected S-waves and multiples from the Moho discontinuity could play a relevant role on the ground motion due to medium to strong size earthquakes away from the source. Although some studies investigated the correlation between the Moho reflections amplitudes and the damage in the far field, little attention was given to the frequency content of these specific phases and their scaling with magnitude. The 2012 Emilia seismic sequence in northern Italy, recorded by velocimetric and accelerometric networks, is here exploited to investigate Moho reflections and multiples (SmSM). A single station method for group velocity-period estimation, based on the multiple filter technique, is applied to strong motion data to detect SmSM. Amplitude and frequency scaling with magnitude is defined for earthquakes from \(\hbox {Mw}=3.9\) to \(\hbox {Mw}=5.9\) . Finally, the ability of SmSM to affect the ground motion for a maximum credible earthquake within the Po plain is investigated by extrapolating observed engineering parameters. Data analysis shows that high amplitude SmSM can be recognized within the Po plain, and at the boundaries between the Po plain and the Alpine chain, at epicentral distances larger than 80 km, in the period range from 0.25 to 3 s and in the group velocity window from about 2.6 to 3.2 km/s. 5 % damped pseudo-spectral accelerations at different periods (0.3, 1.0 and 2.0 s), and Housner intensities, are obtained from data characterized by large amplitude SmSM. A scaling relationship for both pseudo-spectral accelerations and Housner intensities is found for the earthquakes of the 2012 Emilia seismic sequence. \(\hbox {I}_{\mathrm{MCS}}\) from VII to VIII is estimated, as a result of SmSM amplitude enhancement, at about 100 km for a maximum credible earthquake ( \(\hbox {Mw}=6.7\) ) in the Po plain, showing that moderate to high damage cloud be caused by these specific phases.  相似文献   

14.
基于地震动的时空衰减规律和传播特征,采用邻近地震监测台站地震动时程对1 km×1 km尺度的网格点进行近实时插值计算,同时结合场地效应对震区地震动参数进行修正,并以2014年2月12日新疆于田MS7.3地震为例,计算震区格网内各点的地震时程,同时以8 s为时间间隔绘制出地震动峰值等值线图并将其连续播放,得到了于田MS7.3地震峰值地震动(PGV,PGA)的空间分布.结果表明,于田县东部至民丰县北部地区受场地条件影响,震区震害在软弱地基土层及浅地下水位等因素作用下对震区地震动具有明显的放大效应,预测的地震动特征与现场宏观调查结果是一致的.在当前强震台网分布不均匀的情形下,本文方法能较好地描述震区地震动特征,较客观地反映灾区的强地面运动特征.   相似文献   

15.
A series of housing collapses and other serious damage was caused by the 2008 Wenchuan MS 8.0 earthquake in the seismic intensity Ⅵ areas of the Loess Plateau, which is hundreds of kilometers away from the epicenter, and which showed a remarkable seismic intensity anomaly. The seismic disasters are closely related to the seismic response characteristics of the site, therefore, the systematic study of the far-field seismic response law of the Wenchuan earthquake in the Loess Plateau is of great significance to prevent the far-field disaster of great earthquake. In this paper, the seismic acceleration records of several bedrock stations and loess stations from the seismogenic fault of the Wenchuan earthquake to the Loess Plateau were collected, and the attenuation law of ground motion along the propagation path and the characteristics of seismic response on the loess site are studied, and the mechanism of amplification effect of ground motion is analyzed based on the dynamic feature parameters of the loess site obtained through the HVSR method. Taking a typical loess site of thick deposit as the prototype, a series of shaking table tests of dynamic response of loess site models with different thicknesses were carried out. Amplification effect, spectral characteristics of acceleration in model sites were analyzed under the action of a far-field seismic wave of the Wenchuan earthquake. The results show that seismic attenuation on the propagation path along the NE strike of the seismogenic fault to the Loess Plateau is slower than that in other directions, and the predominant period range of ground motion on bedrock site of the Loess Plateau presents broadband characteristics. Because the natural periods of loess sites with thick deposits are within the predominant period range of bedrock input wave, loess sites appear significant amplification effect of ground motion, the horizontal acceleration of ground motion exceeds 0.1 ?g, the seismic intensity reaches 7°. The thicker the loess deposit is, the more significant the change of spectral characteristics of ground motion on loess sites, and the narrower the predominant period range of ground motion becomes, and the closer it is to the natural period of loess sites. Therefore, for some old houses on thick loess sites, the poor seismic performance and strong seismic response eventually led to their collapses and damages because their natural periods are very close to the predominant period of ground motion of the Wenchuan earthquake on thick loess sites; For these damaged high-rise buildings, the resonance effect might be the main reason for their damages because their natural periods are included in the predominant period range of ground motion of the Wenchuan earthquake on thick loess sites.These research results would provide a basis for seismic disasters prediction and evaluation and seismic design of construction engineering in the Loess Plateau.  相似文献   

16.
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408–1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337–353, 2006), Zhang et al. (Geophys J Int 190(1):358–378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.  相似文献   

17.
In this study, the 11 August 2012 M w 6.4 Ahar earthquake is investigated using the ground motion simulation based on the stochastic finite-fault model. The earthquake occurred in northwestern Iran and causing extensive damage in the city of Ahar and surrounding areas. A network consisting of 58 acceleration stations recorded the earthquake within 8–217 km of the epicenter. Strong ground motion records from six significant well-recorded stations close to the epicenter have been simulated. These stations are installed in areas which experienced significant structural damage and humanity loss during the earthquake. The simulation is carried out using the dynamic corner frequency model of rupture propagation by extended fault simulation program (EXSIM). For this purpose, the propagation features of shear-wave including \( {Q}_s \) value, kappa value \( {k}_0 \), and soil amplification coefficients at each site are required. The kappa values are obtained from the slope of smoothed amplitude of Fourier spectra of acceleration at higher frequencies. The determined kappa values for vertical and horizontal components are 0.02 and 0.05 s, respectively. Furthermore, an anelastic attenuation parameter is derived from energy decay of a seismic wave by using continuous wavelet transform (CWT) for each station. The average frequency-dependent relation estimated for the region is \( Q=\left(122\pm 38\right){f}^{\left(1.40\pm 0.16\right)}. \) Moreover, the horizontal to vertical spectral ratio \( H/V \) is applied to estimate the site effects at stations. Spectral analysis of the data indicates that the best match between the observed and simulated spectra occurs for an average stress drop of 70 bars. Finally, the simulated and observed results are compared with pseudo acceleration spectra and peak ground motions. The comparison of time series spectra shows good agreement between the observed and the simulated waveforms at frequencies of engineering interest.  相似文献   

18.
Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake’s location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin (M?=?8.2; ±0.2) and the 1885 Belovodsk (M?=?6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482–1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995–1010, 2005); the Sokolov (Earthquake Spectra 161: 679–694, 2002) approach for estimating intensity from Fourier amplitude spectra; and the Tyagunov et al. (Nat Hazard Earth Syst Sci 6:573–586, 2006) approach for risk computation. Innovatively, all these methods are jointly applied to assess in real time the seismic risk of a particular target site, namely the city of Bishkek. Finally, the site amplification and vulnerability datasets considered in the proposed methodology are taken from previous studies, i.e., Parolai et al. (Bull Seismol Soc Am, 2010) and Bindi et al. (Soil Dyn Earthq Eng, 2011), respectively.  相似文献   

19.
20.
Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by Hashida and Shimazaki (J Phys Earth. 32, 299–316, 1984) and has been used and modified by Joshi (Curr Sci. 90, 581–585, 2006; Nat Hazards. 43, 129–146, 2007) and Joshi et al. (J. Seismol. 14, 247–272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号