首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studies oriented to restoration and conservation of historical monumental buildings have recourse to structural analysis as a way to investigate the genuine structural features of the construction, to better understand its present condition and actual causes of existing damage, to estimate its safety conditions and to determine necessary remedial measures. Based on this background, this paper discusses on the seismic vulnerability of masonry fortresses by means of an analysis methodology based on three different analytical procedures, according to an increased knowledge of the structure. As a relevant case study the Albornoz fortress, a 14th stone masonry construction located in central Italy, was selected. Initially, the strategy proposed to perform this task was aimed at testing and developing an expeditious and non-destructive procedure to evaluate both the seismic vulnerability and the main mechanical properties of the different masonry typologies. The macroscale structural behavior of the fortress was then evaluated through a nonlinear static analysis (pushover) and a more simple approach based on the kinematic theorems of the limit analysis. From this point of view, by comparing the capacity of the construction to withstand lateral loads with the expected demands resulting from seismic actions, these methods provided a highly effective means of verifying the safety of the masonry structure and its vulnerability to extensive damage and collapse.  相似文献   

2.
A vulnerability analysis of some historical and monumental buildings in the city of Málaga is presented in this paper. More than twenty of these monuments were severely damaged or completely destroyed due to the large earthquake (I max = VIII–IX) occurred in the Málaga region in October 1680. The vulnerability index methodology has been used in this paper. This technique is based on statistical data from seismic damage caused to Italian monuments for the past 30?years. For each building, vulnerability curves have been obtained and damage grades have been estimated. A comparison has been carried out between the expected damage grades and the damage observed from past earthquakes, in order to check the feasibility of applying this methodology to Spanish monuments. This comparison has been possible due to the fact that detailed seismic damage information exists for monuments in the city of Málaga that still exist today, which is a very uncommon case in Spain. Results show a good consistency between expected and observed damage, especially for the churches type. Two seismic scenarios have been proposed for the city centre, one deterministic and one probabilistic, where 54 historical and modern buildings have been analyzed. Both scenarios show worrying results, especially for the types of churches, chapels and towers, where expected high probabilities of suffering very heavy damage or even collapse have been obtained. It is highly recommended to take the necessary measures, in the hope of trying to avoid the possible damage that can be expected from future earthquakes.  相似文献   

3.
以川南地区为研究区,并以在建造方式上具有明显当地地域特征的砖混结构房屋为研究对象,结合砖混结构房屋建造特点及川南历史地震(如长宁6.0级地震)震害调查结果等,分析砖混结构房屋典型震害特征,统计其在不同烈度下不同破坏等级的比例,采用经验分析法得到初步的易损性矩阵。在此基础上,针对因样本局限性造成的结构在高烈度下破坏比例不全,使实际易损性矩阵缺失的问题,通过插值法,推算高烈度下的破坏比例,补全经验易损性矩阵,拟合出易损性曲线,建立以震害统计为主、数值模拟为辅的砖混结构易损性分析模型;并基于平均震害指数对比分析,对易损性分析的可靠性进行检验。结果表明,构建的易损性矩阵能客观反映川南地区砖混结构房屋的抗震能力,对开展震害预测、灾害损失评估及震害风险评估等工作具有实际应用价值。  相似文献   

4.
基于时变地震损伤模型提出酸性大气环境作用下多龄期钢框架结构概率地震易损性分析的方法及步骤;考虑服役龄期对钢框架结构抗震性能的影响,分别建立时变概率地震需求模型、时变概率抗震能力模型及时变易损性模型;在概率地震需求分析及概率抗震能力分析的基础上,得到多龄期(20年、30年、40年、50年)钢框架结构的易损性模型及易损性曲线。  相似文献   

5.
Due to the moderate seismic risks in France, the building vulnerability assessment methods developed for high seismic risk countries could not easily be used here because of their cost and the low-risk perception among the public and officials. A light vulnerability assessment method is proposed and tested in Grenoble (France), based on classes and scores provided in the GNDT method but simplified in terms of visual screening and number of structural parameters used. Compared to the RiskUE method, the damage obtained by our approach shows that 90% of buildings have residuals smaller than 0.2, i.e. one grade of the EMS98 damage scale. A large scale survey is devised and conducted among the inhabitants of Grenoble in order to collect the main structural parameters. By comparing the results from the survey to the historical urbanization of Grenoble and to expert surveys performed in two urban districts, the information useful for the light method of vulnerability assessment can be rapidly collected by non-experts reducing substantially the estimate cost. The average damage is then computed using the GNDT formula considering the probable intensities which could be observed in Grenoble (VII and VIII). The average damage reaches 0.4 in the oldest part of Grenoble mainly made of masonry buildings and 0.2 in reinforced concrete suburbs where reinforced concrete predominates. The results are a relative vulnerability assessment that provides useful initial information for the urban zones of Grenoble where the vulnerability is higher. This method can be used to classify the seismic vulnerability in wide seismic-prone regions to a fair degree of accuracy and at low cost.  相似文献   

6.
王盛泽 《华南地震》2010,30(1):82-91
从历史最大地震烈度分布图分析,可知揭阳、汕头、潮州三市位于Ⅶ~Ⅷ度高地震烈度区。该城市群地震灾害有以下特点:市区发生破坏性地震的潜在危险性大;地震时市区地震烈度高,地震灾害大,损失严重。采用宏观经济易损性的地震损失分析方法,重演该区的历史破坏性地震。分析表明:抓好该区的防震减灾工作是保持社会和经济建设持续发展的一项重要工作。  相似文献   

7.
论述了国内外桥梁易损性分析研究的概况,对国内外桥梁易损性分析的主要方法进行了较为全面的论述,包括经验统计法,规范校核法,Pushover分析方法,基于神经网络的方法和基于模糊数学和灰色系统理论的方法等,同时提出了存在的问题和今后尚需开展的研究工作。  相似文献   

8.
Seismic Vulnerability of Historical Constructions: A Contribution   总被引:1,自引:0,他引:1  
Earthquakes are known to be natural hazards that have affected tremendously historical constructions. Unfortunately, as far as earthquake impacts are concerned, there are no world statistics to compare the suffering of populations or of the building stock and their evolution in time, with the damage inflicted to the stock of historical constructions. Lately, a great effort has been placed on engineering developments: (i) to better understand the seismic behaviour of historical construction and (ii) to assess the benefits of different techniques for reinforcing these structures. However, a great deal of discussion is still going on the type of reinforcement that should be applied, how effective it is and how much it costs. Research is needed for helping in these decisions, by providing a more precise framework in this field. The aim of this review is to make an overall insight on some of the available methods for assessing seismic vulnerability of historical constructions and on how to use them in the case of occurrence of an earthquake. Given this occurrence, the objective is to minimize the effects of aftershocks, avoid hurried demolition made under extreme pressure and help shore-up parts in risk of falling. The final aim is also to help in the definition of strategies for the repair of the damaged patrimony, or as a measure to prevent damage in future earthquakes for the most vulnerable cases. The paper is illustrated with the presentation of several examples published in the literature where the author participated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
In this paper the effects of deep excavation on seismic vulnerability of existing buildings are investigated. It is well known that deep excavations induce significant changes both in stress and strain fields of the soil around them, causing a displacement field which can modify both the static and dynamic responses of existing buildings. A FEM model of a real case study, which takes into account geometry, non-linear soil behavior, live and dead loads, boundary conditions and soil–structure interaction, has been developed in order to estimate the soil displacements and their effects on seismic behavior of a reinforced concrete framed system close to deep excavation. Considering a significant accelerometric seismic input, the non-linear dynamic responses of the reinforced concrete framed structure, both in the pre and post-excavation configurations, have been evaluated and, then, compared to estimate the modification in seismic vulnerability, by means of different seismic damage indices and inter-story drifts.  相似文献   

10.
Following several damaging earthquakes in China,research has been devoted to find the causes of the collapse of reinforced concrete(RC) building sand studying the vulnerability of existing buildings.The Chinese Code for Seismic Design of Buildings(CCSDB) has evolved over time,however,there is still reported earthquake induced damage of newly designed RC buildings.Thus,to investigate modern Chinese seismic design code,three low-,mid-and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model(PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center.Finally,the PSDM was used to generate fragility curves for immediate occupancy,significant damage,and collapse prevention damage levels.Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.  相似文献   

11.
The evaluation of the seismic damageability of existing buildings is a primary element in the planning for mitigation of earthquake effects. To this purpose, the use of the vulnerability index has been recently proposed and adopted in various surveys in Italy. The index results from grading the status of various structural and non-structural components exposed to damage in a seismic event. The effectiveness of the vulnerability index as a measure of the health status of buildings is discussed on the basis of regional surveys of vulnerability index versus reported damage, carried out in various Italian areas such as Friuli and the city of Gubbio. Also, investigation of the items most effective in describing damageability among those contributing to the index is performed, in view of formulating a reduced survey procedure. A damage versus vulnerability index database collected in these surveys is presented as well. Finally, a vulnerability index based procedure to evaluate the expected damage in a territory is proposed.  相似文献   

12.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

13.
A detailed study of the most significant seismic effects that took place in the city of Catania has been performed in order to build up a site catalogue, to assess seismic hazard directly from it and to provide the picture of damage scenarios which happened in the past. In the last 1000 years Catania was destroyed twice (1169 and 1693) and more or less severely damaged twelve times (e.g., 1542, 1818, 1848, etc.). Destruction or severe damage are mainly related to earthquakes occurring in the coastal sector of the Hyblean foreland, while slighter, moderate effects are usually due to earthquakes taking place in the seismogenic sources of the Messina Straits and in the inner Hyblean region. The analysis of the historical reports allowed to delineate the damage scenarios of the most relevant events. In particular, for the 1693 case-history it has also been possible to map the damage distribution with reference to the existing urban settlement of the city. The site catalogue was used for assessing seismic hazard; the obtained estimates show that the probability of occurrence for intensity 7 and 10 exceeds 99.9% for 150 and 500 years, respectively. These values, associated with the high vulnerability caused by the city growth which occurred mainly before the introduction of the seismic code (1981) and without ad-hoc planning policies, implies that the urban system is exposed to high seismic risk.  相似文献   

14.
The Capacity Spectrum Based Method developed in the framework of the European project Risk-UE has been applied to evaluate the seismic risk for the city of Barcelona, Spain. Accordingly, four damage states are defined for the buildings, the action is expressed in terms of spectral values and the seismic quality of the buildings, that is, their vulnerability, is evaluated by means of capacity spectra. The probabilities of the damage states are obtained considering a lognormal probability distribution. The most relevant seismic risk evaluation results obtained for Barcelona, Spain, are given in the article as scenarios of expected losses.  相似文献   

15.
The seismic vulnerability assessment of old masonry buildings is essential not only to buildings with recognised historical and heritage value but also to ordinary residential masonry buildings. This paper approaches the seismic vulnerability assessment of masonry buildings by applying a simplified methodology to the old city centre of Seixal in Portugal. The methodology adopted in this study was based on a vulnerability index used for the evaluation of damage and the study of loss scenarios on a large scale. Over 500 buildings were assessed using this methodology, and the results were analysed using an integrated Geographical Information System tool. The integration of the vulnerability and loss results could allow city councils or regional authorities to plan interventions based on a global view of the site under analysis, leading to more accurate and comprehensive risk mitigation strategies that support the requirements of safety and emergency planning.  相似文献   

16.
On September 6, 2002, a ML = 5.6 earthquake, occurring some tens of kilometres offshore from the Northern Sicilian coast (Southern Tyrrhenian Sea), slightly damaged the city of Palermo and surroundings (degree 6 in the European Macroseismic Scale 1998). The macroseismic investigation of the shock and a detailed study of effects of the main earthquakes which affected Palermo in the past have been performed in order to evaluate the seismic response of the city. Moreover, the comparison of the recent event, which is instrumentally constrained, with historical earthquakes allows us to infer new insights on the seismogenic sources of the area, that seem located offshore in the Tyrrhenian sea.In the last 500 years, Palermo has never been completely destroyed but has suffered effects estimated between intensities 6 and 8 EMS-98 many times (1693, 1726, 1751, 1823, 1940, 1968, 2002). The damage scenarios of the analysed events have shown that damage distribution is strongly conditioned by soil response in the different parts of the city and by a high building vulnerability, mainly in the historical centre and in the south-eastern zone of the modern city. As a matter of fact, Palermo has always suffered greater effects than those reported for other nearby localities. The hazard assessment obtained using observed site intensities has shown that the probability of occurrence for intensity 8 (the strongest intensity observed in Palermo) exceeds 99% for 550 years, while the estimated mean return period is 152 ± 40 years. These results, in connection with building vulnerability due to the urban expansion before the introduction of seismic code, suggest that the city is exposed to a relatively high seismic risk.This paper has not been submitted elsewhere in identical or similar form, nor will it be during the first 3 months after its submission to Journal of Seismology.  相似文献   

17.
搜集自开展地震灾害直接损失评估以来,四川境内破坏性地震震害资料,统计省内藏式房屋在不同烈度不同破坏等级下的破坏比,给出易损性矩阵;采用房屋结构整体易损性分析方法,依据藏式房屋易损性矩阵,通过烈度与地震动参数的对应关系,以对数正态分布函数为模型,对藏式房屋在不同地震动参数(峰值速度)下超越毁坏、破坏、基本完好的概率曲线进行拟合,给出易损性曲线,为其他结构类型房屋的易损性研究、灾害损失评估工作及震害预测提供参考。  相似文献   

18.
Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centres should be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity. Also presented and discussed are the strategy and proposed methodology adopted for the vulnerability assessment, damage and loss scenarios for the city centre of Coimbra, Portugal, using a GIS mapping application.  相似文献   

19.
In this paper we present a site effects analysis carried out in Málaga city’s historical centre (Southern Spain). Two different methodologies have been used: an experimental technique using ambient noise measurements and a 1D numerical method. Soil fundamental frequencies have been obtained from the first technique, and soil transfer functions have been calculated from the numerical methodology. In order to use these results in vulnerability studies, intensity increments for each type of soil have also been estimated. From this information, a seismic microzonation has been proposed for the city centre, classified in six types of soils. Soil fundamental frequencies vary between above 5.0Hz at the hills of the city (where rock arises on the surface), and 1.0Hz near Guadalmedina river. The results show regions with high intensity increments (ΔI = +1.5) corresponding to areas which suffered heavy damage in the 1680 earthquake (Imax = VIII–IX). Moreover, most of the monuments and historical buildings in the city are located in these high risk areas. Results underline the importance of this kind of studies for seismic risk mitigation, historical preservation and emergency planning in the main cities’ historical centres.  相似文献   

20.
A vulnerability analysis of c.300 unreinforced Masonry churches in New Zealand is presented. The analysis uses a recently developed vulnerability index method (Cattari et al. in Proceedings of the New Zealand Society for Earthquake Engineering NZSEE 2015 conference, Rotorua, New Zealand, 2015a; b; SECED 2015 conference: earthquake risk and engineering towards a Resilient World, Cambridge; Goded et al. in Vulnerability analysis of unreinforced masonry churches (EQC 14/660)—final report, 2016; Lagomarsino et al. in Bull Earthq Eng, 2018), specifically designed for New Zealand churches, based on a widely tested approach for European historical buildings. It consists of a macroseismic approach where the seismic hazard is defined by the intensity and correlated to post seismic damage. The many differences in typologies of New Zealand and European churches, with very simple architectural designs and a majority of one nave churches in New Zealand, justified the need to develop a method specifically created for this country. A statistical analysis of the churches damaged during the 2010–2011 Canterbury earthquake sequence was previously carried out to develop the vulnerability index modifiers for New Zealand churches. This new method has been applied to generate seismic scenarios for each church, based on the most likely seismic event for 500 years return period, using the latest version of New Zealand’s National Seismic Hazard Model. Results show that highly vulnerable churches (e.g. stone churches and/or with a weak structural design) tend to produce higher expected damage even if the intensity level is lower than for less vulnerable churches in areas with slightly higher seismicity. The results of this paper provide a preliminary tool to identify buildings requiring in depth structural analyses. This paper is considered as a first step towards a vulnerability analysis of all the historical buildings in the country, in order to preserve New Zealand’s cultural and historical heritage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号