首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible-wall hydraulic conductivity tests were carried out on bottom ash, fly ash and compacted specimens of sand with additions of 0, 3, 6, 9 and 18% of bentonite. In order to study the effect of bentonite inclusion and particle morphology on the hydraulic conductivity of the admixtures, an investigation was undertaken based on thin section micrographs. It was found that, for both bottom and fly ash admixtures, bentonite addition reduced only one order of magnitude the hydraulic conductivity, from 1.78 × 10−6 m/s to 1.39 × 10−7 m/s. On the other hand, the sand hydraulic conductivity was reduced five orders of magnitude, from 3.17 × 10−5 m/s to 5.15 × 10−10 m/s. Among several factors that can be responsible for the difficulty in reducing hydraulic conductivity, such as ash grain size distribution and elevated cation concentration (leached from the ash) in pore water, it can also be recalled the high particle voids observed in the ash by means of microscopic analysis. The same is not true with the sand, which has solid particles, without inner voids.  相似文献   

2.
Wind-blown mineral dust derived from the crustal surface is an important atmospheric component affecting the Earth’s radiation budget. Deposition of dust particles was measured in snow on the Glacier No. 4, Mt Bogeda, in the eastern Tian Shan, China. The mean number concentration of dust particles with 0.57 < d < 26 μm in the snowpack is 279 × 103 mL?1, with a mean mass concentration of 1,480 μg kg?1. Dust number size distribution showed the dominant particles with d < 2 μm, while volume size distribution showed single-modal structures having volume median diameters from 3 to 25 μm. Results were compared with the data from other sites in the Tian Shan and various northern hemisphere sites. A backward trajectory model was also employed to examine the transport process of dust particles in this region. Most of the air mass originated from the southern and northwestern regions, e.g., the Taklimakan and Gurbantunggut deserts in springtime, during the Asian dust period, which may bring plentiful aerosol dust particles from the sandy deserts. Transport of dust from western Chinese deserts to adjacent mountains is in agreement with a growing body of evidence on the importance of dust inputs to alpine regions.  相似文献   

3.
《Applied Geochemistry》2000,15(4):425-438
The dissolution of silica and diffusion of reactive dissolved Si in the porewaters of river sediments are investigated using sediments of different physical and chemical properties. Three sediments are considered: (a) from sectioned cores taken from a river-bed, (b) fine organic-rich surface sediment (<5 cm depth) installed in a fluvarium channel and, (c) coarse river sediment of low organic matter content also installed in a fluvarium channel. Dissolution rates of silica are measured at 10°C using batches of suspended material. The derived dissolution rate constants show large differences between the sediments. The river bed-sediment cores had vertical concentration profiles of dissolved Si that are consistent with the diffusion and dissolution of biogenic silica. Experiments in a fluvarium channel enabled Si fluxes to be calculated from a mass-balance of the overlying solution. The results are consistent with the attainment of a steady-state concentration profile of dissolved Si in the sediment. There are no discernible effects of water velocity over the sediment between 5 and 11 cm s−1. However, at 20 cm s−1, the flux increases as a result of either entrainment of fine particles at the surface or advective effects in the surface sediment. A fluvarium experiment with the fine sediment (<125 μm) over 61 days, produced a concentration profile with the highest concentration of 1025 μmol dm−3 at a depth of 4–5 cm in the sediment. A FORTRAN program is used to model the results of the increase in dissolved Si in the overlying water and development of a concentration profile in the porewater. This leads to a sediment diffusion coefficient of 1.21×10−9 m2 s−1 at 8.8°C at the beginning of the experiment and rate constant k=13.1×10−7 s−1 at pH=7.82 and average temperature of 7.6°C for the entire experiment. Fluxes measured at the sediment–surface interface and calculated assuming steady-state profiles had developed are typically 0.01–0.04 μmol m−2 (of river bed) s−1. The approach enables the efflux of dissolved Si from bottom-sediments to be estimated from dissolution rates measured using suspensions of bed-sediment.  相似文献   

4.
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater.  相似文献   

5.
Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.–Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0–2 m depth) to reducing (2–5 m depth) then suboxic conditions (5–7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n = 7) and sediment (n = 11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ∼700 mg kg−1) is associated with the suboxic zones mostly between 0 and 2 m depth and less frequently between 5 and 7 m depth. The As enriched zones consist of several 5–10 cm-thick dispersed layers and span a length of ∼5–15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6 ± 11.7 mg L−1) and As (118 ± 91 μg L−1, mostly as arsenite) between 2 and 5 m depth, but lower concentrations between 0 and 2 m depth (0.13 ± 0.19 mg L−1 Fe, 1 ± 1 μg L−1 As) and between 5 and 6 m depth (1.14 ± 0.45 mg L−1 Fe, 28 ± 17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (∼10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer.  相似文献   

6.
An exploratory study has been conducted to test the utility of automated mineral analysis observations to identify flue dust particles in topsoils exposed for several decades to emissions of a copper smelter. The methods used are readily available in mining countries. To identify the most impacted sites, the Cu, Zn, Pb, Mo and As levels in water and diluted sulphuric acid extractions of four topsoil size fractions (833–495 μm, 246–148 μm; 74–38 μm; <38 μm) were analysed. X-ray diffraction analyses were used to demonstrate the mineralogical degradation of smectite phases when approaching the smelter. Flue dust particles in different states of conservation in topsoils were directly observed by scanning electron microscopy (SEM) aided by energy dispersive detection of X-rays. Qemscan® scanning of dispersed topsoil preparations (10,000 particles) pinpoints smelter particles by their density; flue dust pearls can be tracked by sorting particles according to their sphericity, clearly identifying them as pyrometallurgical products. When sorting soil particles by mineral groups (e.g. sulphides), an increase in this phase group can be observed when approaching the smelter. SEM resolution limits observations to particles larger than 2–3 μm. Smaller particles can be observed by transmission electron microscopy, although observer experience and the availability of equipment time are essential as is the case for SEM.  相似文献   

7.
Present study addresses the role of major plate-driving forces, particularly the slab pull and slab resistive forces, for the generation of 26 December 2004 M w > 9.0 off Sumatra megathrust earthquake. Major controls on the plate-driving forces are normally visualized through age, speed, and average dip of the slab during subduction. Wide variation in age, plate obliquity, stress obliquity, subduction rate, dip angle, and flexing depth of the subducting oceanic lithosphere between Andaman and Sumatra thus allowed us for quantitative evaluation of the slab pull (F SP) and slab resistive (F SR) forces in three well-defined sectors (I, II and III). Computed values of these forces in the three sectors: (1) F SP = 1.29 × 1013 N/m, F SR = 1.41 × 1013 N/m; sector I, (2) F SP = 2.10 × 1013 N/m, F SR = 1.13 × 1013 N/m; sector II, and (3) F SP = 2.08 × 1013 N/m, F SR = 2.72 × 1013 N/m; sector III clearly suggest a spatial variation of stress regime in the subducting oceanic lithosphere. Excess F SR in sectors I and III are interpreted as the causative forces behind the triggering of major seismic energy bursts near Sumatra and Andaman on 26 December 2004. A gap of minimum seismic energy burst near Great Nicobar possibly was controlled by the excess of F SP in sector II. This study further advocates that the cyclic stress, resulted from unbalanced component of slab resistive force, had a definite control on the occurrence of 2004 off Sumatra megathrust earthquake around the flexing zone of the subducting lithosphere.  相似文献   

8.
Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5–16 μm) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 μm fraction varied from 65 to 1040 ng/m3 of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy (μXANES) and X-ray diffraction (μXRD) and found to contain multiple As-bearing mineral species, including Fe–As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.  相似文献   

9.
《Sedimentology》2018,65(2):561-581
Layered deposits of relatively light and heavy minerals can be found in many aquatic environments. Quantification of the physical processes which lead to the fine‐scale layering of these deposits is often limited with flumes or in situ field experiments. Therefore, the following research questions were addressed: (i) how can selective grain entrainment be numerically simulated and quantified; (ii) how does a mixed bed turn into a fully layered bed; and (iii) is there any relation between heavy mineral content and bed stability? Herein, a three‐dimensional numerical model was used as an alternative measure to study the fine‐scale process of density segregation during transport. The three‐dimensional model simulates particle transport in water by combining a turbulence‐resolving large eddy simulation with a discrete element model prescribing the motion of individual grains. The granular bed of 0·004 m in height consisted of 200 000 spherical particles (D50 = 500 μ m). Five suites of experiments were designed in which the concentration ratio of heavy (5000 kg m−3) to light particles (i.e. 2560 kg m−3) was increased from 6%, 15%, 35%, 60% to 80%. All beds were tested for 10 sec at a predefined flow speed of 0·3 m sec−1. Analysis of the particle behaviour in the interior of the beds showed that the lighter particles segregated from the heavy particles with increasing time. The latter accumulated at the bottom of the domain, forming a layer, whereas the lighter particles were transported over the layer forming sweeps. Particles below the heavy particle layer indicated that the layer was able to armour the particles below. Consequentially, enrichment of heavy minerals in a layer is controlled by the segregation of a heavy mineral fraction from the light counterpart, which enhances current understanding of heavy mineral placer formation.  相似文献   

10.
Detrital gold particles in paleoplacer deposits develop recrystallised rims, with associated expulsion of Ag, leading to the formation of Ag-poor rims which have been recognised in most placer gold particles around the world. Recrystallisation is facilitated by accumulation of strain energy as the gold particles are deformed, particularly on particle margins, during transportation in a fluvial system. The recrystallisation process ensues after sedimentary deposition and can occur at low temperatures (<40 °C) over long geological time scales (millions of years). In the Otago placer goldfield of southern New Zealand, paleoplacers of varying ages contain gold with varying transport distances and these display differing degrees of rim formation. Narrow (1–10 µm) recrystallised rims with 0–3 wt% Ag formed on gold particles that had been transported <10 km from their source and preserved in Eocene sediments. Relict, coarse grained (∼100 µm) gold particle cores have 3–10 wt% Ag, which is representative of the source gold in nearby basement rocks. Gold in the Miocene paleoplacers was recycled from the Eocene deposits and transported >20 km from their source. The gold particles now have wider recrystallised rims (up to 100 µm), so that some particles have essentially no relict cores preserved. Gold in Cretaceous paleoplacers have wide (∼100 µm) recrystallised low-Ag rims, even in locally-derived particles, partly as a result of diagenetic effects not seen in the younger placers. Gold particles in all the paleoplacers have delicate gold overgrowths that are readily removed during recycling, but are replaced by groundwater dissolution and reprecipitation on a time scale of <1 Ma. The recrystallisation that leads to Ag-poor rim formation is primarily related to the amount of deformation imposed on particles during sedimentary transport, and is therefore broadly linked to transport distance, but is also partly controlled by the age of the paleoplacer on time scales of tens of millions of years. Gold particles that have been derived directly from basement sources can retain their original composition for long distances (tens to hundreds of kilometres) in a river system, with only minor recrystallised rim development. Gold particles that have been recycled through paleoplacer deposits can lose this link to source composition after relatively short transport distances because of extensive recrystallisation.  相似文献   

11.
This study was carried out in order to determine the concentration of heavy metals, e.g., lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), nickel (Ni) and chromium (Cr) in road dust in Kuala Lumpur’s city centre. Samples were collected from four sampling locations, each of which had four sampling points and three replications. Heavy metals from different fractions of particles separated by different diameter sizes: d < 63 μm (Fraction A), 63 < d < 125 μm (Fraction B) and 125 < d < 250 μm (Fraction C) were analyzed using inductively coupled plasma mass spectrometry. The results from this study showed that concentration of heavy metals was dominated by the smallest particle size: <63 μm and that Fe was the most abundant heavy metal overall, followed by Cu > Mn > Zn > Pb > Ni > Cr > Cd. The fact that Cd had the highest enrichment factor value (EF) for all particle sizes indicates that anthropogenic activities contributed to the presence of this metal. There was also a higher EF value for heavy metals in small particle (Fraction A), compared to Fraction B and C, which suggests that fine particles were being produced through anthropogenic activities. Cluster analysis and principal component analysis demonstrated the likelihood of the heavy metals detected in the road dust, originating from road traffic and industrial activities.  相似文献   

12.
Uranium(VI) sorption onto kaolinite was investigated as a function of pH (3–12), sorbate/sorbent ratio (1 × 10?6–1 × 10?4 M U(VI) with 2 g/L kaolinite), ionic strength (0.001–0.1 M NaNO3), and pCO2 (0–5%) in the presence or absence of 1 × 10?2–1 × 10?4 M citric acid, 1 × 10?2–1 × 10?4 M EDTA, and 10 or 20 mg/L fulvic acid. Control experiments without-solids, containing 1 × 10?6–1 × 10?4 M U(VI) in 0.01 M NaNO3 were used to evaluate sorption to the container wall and precipitation of U phases as a function of pH. Control experiments demonstrate significant loss (up to 100%) of U from solution. Although some loss, particularly in 1 × 10?5 and 1 × 10?4 M U experiments, is expected due to precipitation of schoepite, adsorption on the container walls is significant, particularly in 1 × 10?6 M U experiments. In the absence of ligands, U(VI) sorption on kaolinite increases from pH ~3 to 7 and decreases from pH ~7.5 to 12. Increasing ionic strength from 0.001 to 0.1 M produces only a slight decrease in U(VI) sorption at pH < 7, whereas 10% pCO2 greatly diminishes U(VI) sorption between pH ~5.5 and 11. Addition of fulvic acid produces a small increase in U(VI) sorption at pH < 5; in contrast, between pH 5 and 10 fulvic acid, citric acid, and EDTA all decrease U(VI) sorption. This suggests that fulvic acid enhances U(VI) sorption slightly via formation of ternary ligand bridges at low pH, whereas EDTA and citric acid do not form ternary surface complexes with the U(VI), and that all three ligands, as well as carbonate, form aqueous uranyl complexes that keep U(VI) in solution at higher pH.  相似文献   

13.
The trap efficiency of a catcher in wind erosion measurements plays a significant role, and in many cases suspension trap efficiencies at high wind velocities are still unknown. The sediment trap efficiency generally changes with particles size and with wind speed. In this study, the efficiency of Vaseline Slide (VS) and Modified Wilson and Cooke (MWAC) catchers were determined with different sand particle sizes (<50, <75, 50–75, 200–400, and 400–500 μm) at a fixed wind speed (13.3 ms−1) and with different soil textures at different wind velocities (10.3, 12.3, and 14.3 ms−1) in the wind tunnel of the International Center for Eremology (ICE), Ghent University, Belgium. The traps were placed at different heights (4, 6.5, 13, 20, 120, and 192 cm for VS and 1.5, 3, 5, 8, 11, and 30 cm for MWAC) to catch saltating and suspended sediments in a 12-m long, 1.2-m wide and 3.2-m high working section of the wind tunnel. In the sand particle experiments, the efficiency of the VS catcher was 92% for particles smaller than 50 μm and decreased with increasing particles size, falling to 2.2% for 400–500 μm particle size at 13.4 ms−1. However, the MWAC’s efficiency was 0% for particles smaller than 50 μm and increased with increasing particle size to 69.5% at 400–500 μm. In the experiments with different soil textures, the efficiency of each catcher significantly changed with soil and with wind speed. It also considerably varied with the catchers: for instance, for sand (S), the MWAC efficiency was very high (67.4, 113.4, and 90.5% at 10.3, 12.3, and 14.4 ms−1, respectively) while the efficiency of VS was relatively very low (5.2, 4.4, and 1.9% at 10.3, 12.3, and 14.4 ms−1, respectively). Results indicated that the efficiency depends critically on the particle size, type of catcher, and wind speed, and these could be helpful to increase the robustness of wind erosion measurements.  相似文献   

14.
The annual and seasonal dust emissions were calculated for eight types of desertified lands at 120 sites in the Heihe River Basin of northwestern China. The results showed that dust emission rates increased from the middle to the lower reaches of the river by a factor of up to 103. There two strongest areas of dust emission are the dried-up Gaxun Lake with a dust emission rate of 1.6 t ha−1 year−1, and the desertified grassland areas around the abandoned Heicheng City, with a dust emission rate of 0.6–0.7 t ha−1 year−1. The total annual dust emissions with their particle diameters less than 50, 30, and 10 μm were 1.71 × 106, 1.11 × 106, and 0.555 × 106 t, respectively. Dust emission rates showed striking seasonal variations, with the maximum value (45%) occurring in spring and the minimum value (13.5%) in summer. The mineral aerosol-size distributions were also measured and the results showed that the size distributions for dust and non-dust events were both trimodal, in contrast with the widely accepted view that primary particles such as aeolian dust are coarse, whereas particles less than 1 μm in diameter are mainly secondary particulate substances such as ammonium nitrate, ammonium sulfate, and organic matter.  相似文献   

15.
Iodine enrichment in the Atacama Desert of northern Chile is widespread and varies significantly between reservoirs, including nitrate-rich “caliche” soils, supergene Cu deposits and marine sedimentary rocks. Recent studies have suggested that groundwater has played a key role in the remobilization, transport and deposition of iodine in Atacama over scales of millions-of-years. However, and considering that natural waters are also anomalously enriched in iodine in the region, the relative source contributions of iodine in the waters and its extent of mixing remain unconstrained. In this study we provide new halogen data and isotopic ratios of iodine (129I/I) in shallow seawater, rivers, salt lakes, cold and thermal spring water, rainwater and groundwater that help to constrain the relative influence of meteoric, marine and crustal sources in the Atacama waters. Iodine concentrations in surface and ground waters range between 0.35 μM and 26 μM in the Tarapacá region and between 0.25 μM and 48 μM in the Antofagasta region, and show strong enrichment when compared with seawater concentrations (I = ∼0.4 μM). In contrast, no bromine enrichment is detected (1.3–45.7 μM for Tarapacá and 1.7–87.4 μM for Antofagasta) relative to seawater (Br = ∼600 μM). These data, coupled to the high I/Cl and low Br/Cl ratios are indicative of an organic-rich sedimentary source (related with an “initial” fluid) that interacted with meteoric water to produce a mixed fluid, and preclude an exclusively seawater origin for iodine in Atacama natural waters. Iodine isotopic ratios (129I/I) are consistent with halogen chemistry and confirm that most of the iodine present in natural waters derives from a deep initial fluid source (i.e., groundwater which has interacted with Jurassic marine basement), with variable influence of at least one atmospheric or meteoric source. Samples with the lowest isotopic ratios (129I/I from ∼215 to ∼1000 × 10−15) strongly suggest mixing between the groundwater and iodine storage in organic-rich rocks (with variable influence of volcanic fluids) and pre-anthropogenic meteoric water, while samples with higher values (∼2000–93,700 × 10−15) indicate the input of anthropogenic meteoric fluid. Taking into account the geological, hydrologic and climatic features of the Atacama region, we propose that the mean contribution of anthropogenic 129I is associated with 129I releases during nuclear weapon tests carried out in the central Pacific Ocean until the mid 1990's (129I/I = ∼12,000 × 10−15). This source reflects rapid redistribution of this radioisotope on a global scale. Our results support the notion of a long-lived continental iodine cycle in the hyperarid margin of western South America, which is driven by local hydrological and climate conditions, and confirm that groundwater was a key agent for iodine remobilization and formation of the extensive iodine-rich soils of Atacama.  相似文献   

16.
Non-magnetized suspensions of magnetite particles with concentrations in excess of 30% by mass and particle size less than 75 μm exhibit Bingham plastic behaviour. When exposed to external magnetic fields of strengths in excess of 41 × 10−4 T, the rheological behaviour of the suspensions departs from the Bingham model and can be described by a Herschel–Bulkley model of the form τ = τ0 + n. The value of the index n was found to range from 0.38 to 0.9, depending on the magnetic field strength, solids concentration and particle size and correlations are proposed for the apparent viscosity of magnetized suspensions as a function of magnetic field strength and solids concentration.  相似文献   

17.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   

18.
The present study examines variation of ambient aerosol mass and number concentrations in Chiang Mai, Thailand during winter. Aerosol particle samples were collected and measured at four different sites, representative of urban, industrial, residential and rural areas during daytime between December 2003 and January 2004. Average 10 h particulate matter (PM) mass concentrations were found to be in the range of 75–290 ì g/m3, with average value of 149 ± 45 ì g/m3. Urban and industrial areas appeared to have higher PM loading than residential and rural areas. Number concentration and size distribution of particles in the range of 0.3–10.0 ìm did not exhibit any marked variation between sites. Relatively stable number concentrations were reported. Temporal variation of number concentrations was not clearly significant. No short term peak observed during rush hours. During sampling period, the average number concentration for 0.3–0.5, 0.5–1.0, 1.0–5.0 and 5.0–10.0 ìm were 6.60 × 106, 1.18 × 106, 2.11 × 105 and 1.12 × 104/m3, respectively. Particles with diameter smaller than 1.0 ìm accounted for over 90 % of the total number concentration. Concentrations of major metals were determined by atomic absorption spectrophotometer (Pb, Fe, Al, Si, Cr, Cd, Ni, Zn) and flame photometer (K, Na and Ca). Data obtained were used to identify probable sources via a multivariate analysis. Si, Na, Fe, Ca, Al and K were the six dominant elements in the airborne PM. Principle component analysis was carried out and major sources of airborne PM in Chiang Mai were determined, namely, (1) long distance sources such as sea spray, earth soil and industrial combustion, (2) short-distance sources such as crustal re-suspension, vehicular related emissions and vegetation burning, and (3) the unknown distance sources with low influence of traffic emissions.  相似文献   

19.
Yang  Heejun  Tawara  Yasuhiro  Shimada  Jun  Kagabu  Makoto  Okumura  Azusa 《Hydrogeology Journal》2021,29(6):2091-2105

The hydraulic conductivity of an unconfined carbonate aquifer at the uplifted atoll of Minami-Daito, Japan, was evaluated by a combination of cross-spectral analysis, analytical solution, and density-dependent groundwater modeling based on observed groundwater levels in 15 wells and at sea level. The island area was divided into 10 subregions based on island morphology and on inland propagation of ocean tides. The hydraulic conductivity was obtained for each subregion using analytical solutions based on phase lags of M2 constituents of ocean tides at each well by assuming two aquifer thicknesses (300 and 1,800 m) and two effective porosities (0.1 and 0.3). The density-dependent groundwater model evaluated the hydraulic conductivity of the subregions by reproducing observed groundwater levels. The hydraulic conductivity in the subregions was estimated as 3.46?×?10?3 to 6.35?×?10?2 m/s for aquifer thickness of 300 m and effective porosity of 0.1, and as 1.73?×?10?3 to 3.17?×?10?2 m/s for aquifer thickness of 1,800 m and the effective porosity of 0.3. It was higher in southern and northern areas, and higher in interior lowland than in the western and eastern areas. Fissures and dolomite distributions on the island control differences of the omnidirectional ocean tidal propagation and cause these differences in hydraulic conductivity. The method used for this study may also be applicable to other small islands that have few or no data for hydraulic conductivity.

  相似文献   

20.
In this study, arsenic adsorption to an Australian laterite has been examined for a particle-size range between 38 μm and 25 mm. The results show that particle size influences both kinetic and equilibrium characteristics of arsenic adsorption. The equilibrium adsorption capacity increases from around 100 mg kg?1 for laterite particles coarser than 4 mm, to around 160 mg kg?1 for laterite particles between 75 μm and 4 mm, and to over 200 mg kg?1 for laterite particles finer than 75 μm. The kinetic adsorption data can be fitted with the pseudo-second-order reaction model, in particular for finer particles where the film diffusion and/or surface reaction are important processes. The model-fitted rate constant remains steady for laterite particles coarser than 2 mm, increases moderately with particle size in the range between 75 μm and 2 mm, and increases dramatically for laterite particles finer than 75 μm. These arsenic adsorption behaviours can be explained by the relative importance of two particle-size-dependent processes: quick external-surface adsorption (more important for fine particles) and slow intraparticle adsorption (more important for coarse particles). Most of the external-surface adsorption completes in the first hour of the experiment. To apply the studied laterite for dissolved arsenic removal, it is recommended that fine particles, in particular finer than 75 μm, should be used if the contact time is the limitation, and that coarse particles, in particular 2–4 mm, should be used if sufficient contact time is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号