首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many kinetic models for oil and gas generation use the same kinetics for generation of both oil and gas. In these models, gas is generated at precisely the same time as oil, despite agreement among geochemists that oil generation in nature largely precedes gas generation. Here we present a method for deriving separate kinetics for oil generation and gas generation from the available kinetics for total hydrocarbon generation. The method is based on published data in which oil kinetics are compiled separately from gas kinetics, but it is generalized to be applicable to any of the main kerogen types (I, IIa, IIb, or III), or to any mixtures of those types. Application of this new nonsynchronous model shows that the traditional synchronous models overpredict gas generation by about a factor of two within the oil window, and conversely severely underpredict late gas generation. The nonsynchronous model may predict gas generation several tens of million years later than does the synchronous model. The errors inherent in the synchronous models can be of significance in exploration decisions.  相似文献   

2.
Analysis of three‐dimensional (3D) seismic data from the headwall area of the Storegga Slide on the mid‐Norwegian margin provides new insights into buried mass movements and their failure mechanisms. These mass movements are located above the Ormen Lange dome, a Tertiary dome structure, which hosts a large gas reservoir. Slope instabilities occurred as early as the start of the Plio‐Pleistocene glacial–interglacial cycles. The 3D seismic data provide geophysical evidence for gas that leaks from the reservoir and migrates upward into the shallow geosphere. Sediments with increased gas content might have liquefied during mobilization of the sliding and show different flow mechanisms than sediments containing less gas. In areas where there is no evidence for gas, the sediments remained intact. This stability is inherited by overlying strata. The distribution of gas in the shallow subsurface (<600 m) may explain the shape of the lower Storegga headwall in the Ormen Lange area.  相似文献   

3.
Wang  Lu  He  Yongming  Wang  Qian  Liu  Mingming  Jin  Xin 《Natural Resources Research》2021,30(5):3673-3694
Natural Resources Research - Commingled production has been widely used as an efficient production method in gas field. However, the interlayer interference of gas flow seriously restricts the...  相似文献   

4.
The GRV 024516 and GRV 024517 meteorite samples collected from Grove Montains,Antactica are ureilite and H5 ordinary chondrite,respectively.Based on the study of mineralogy-petrology,the cosmic-ray exposure ages and gas retention ages of these two meteorites were determinated and calculated.Their cosmic-ray exposure ages are 33.3 Ma,51.7 Ma,and gas retention ages are 1936.8 Ma and 3720 Ma,respectively.The ureilite contains diamond,graphite and amorphous C,which are mainly carrier of noble gases indicating obviously shock metamorphism effects,which induced 40Ar partial loss.The H5 chondrite indicates thermal metamorphism of parent body,its gas retention age fall the range between 3220 Ma and 4510 Ma of the least shocked H5 chondrites  相似文献   

5.
方恺  何坚坚  张佳琪 《地理学报》2021,76(12):3090-3102
国际政治经济形势正在发生深刻变化,实现区域协调均衡发展对于形成以国内大循环为主的新发展格局至关重要。方创琳于2020年2月提出垂直于胡焕庸线的博台线可以表征中国区域发展的均衡格局。本文通过对中国338个地级市的温室气体排放水平进行分析,旨在论证博台线作为中国区域发展均衡线的合理性和可能性。结果显示:① 2015年二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)和含氟温室气体总量以博台线为界呈南北对称的空间分布格局,且博台线两侧各类温室气体的排放强度和人均排放量分布基本均衡,各产业部门CO2排放强度和人均排放量的区域差异均较小;② 博台线西南半壁和东北半壁内各类温室气体排放在GDP和人口维度上总体呈均衡分布态势,且各部门CO2排放强度和人均排放量的空间分布也较为均衡。总体而言,博台线两侧表征人类活动强度的温室气体排放水平较为均衡,一定程度上反映出其作为中国区域发展战略均衡线的科学性与合理性。  相似文献   

6.
Cheng  Zhiheng  Pan  Hui  Zou  Quanle  Li  Zhenhua  Chen  Liang  Cao  Jialin  Zhang  Kun  Cui  Yongguo 《Natural Resources Research》2021,30(2):1481-1493

With increasing demands for coal resources, coal has been gradually mined in deep coal seams. Due to high gas content, pressure and in situ stress, deep coal seams show great risks of coal and gas outburst. Protective coal seam mining, as a safe and effective method for gas control, has been widely used in major coal-producing countries in the world. However, at present, the relevant problems, such as gas seepage characteristics and optimization of gas drainage borehole layout in protective coal seam mining have been rarely studied. Firstly, by combining with formulas for measuring and testing permeability of coal and rock mass in different stress regimes and failure modes in the laboratory, this study investigated stress–seepage coupling laws by using built-in language Fish of numerical simulation software FLAC3D. In addition, this research analyzed distribution characteristics of permeability in a protected coal seam in the process of protective coal seam mining. Secondly, the protected coal seam was divided into a zone with initial permeability, a zone with decreasing permeability, and permeability increasing zones 1 and 2 according to the changes of permeability. In these zones, permeability rises the most in the permeability increasing zone 2. Moreover, by taking Shaqu Coal Mine, Shanxi Province, China as an example, layout of gas drainage boreholes in the protected coal seam was optimized based on the above permeability-based zoning. Finally, numerical simulation and field application showed that gas drainage volume and concentration rise significantly after optimizing borehole layout. Therefore, when gas is drained through boreholes crossing coal seams during the protective coal seam mining in other coal mines, optimization of borehole layout in Shaqu Coal Mine has certain reference values.

  相似文献   

7.
The production and burning of fossil fuels is the primary contributor to CO2 emissions for the U.S. We assess the impact of producing coal, crude oil, and natural gas on the environment and economic well-being by analyzing state-level data from 2001 to 2015. Our findings show that coal production has led to more CO2 emissions and no significant benefit to economic well-being. Crude oil production has a non-significant impact on CO2 emissions but is related to a lower poverty rate, a higher median household income, and a higher employment rate. Natural gas withdrawals have a positive impact on median household income. We discuss these findings in the context of current U.S. energy policies and then provide directions for future research.  相似文献   

8.
Natural Resources Research - Accurate prediction of pore-pressures in the subsurface is paramount for successful planning and drilling of oil and gas wellbores. It saves cost and time and helps to...  相似文献   

9.
Li  Qixian  Xu  Jiang  Peng  Shoujian  Yan  Fazhi  Zhou  Bin  Han  Ende  Jiang  Cheng 《Natural Resources Research》2021,30(2):1427-1443
Natural Resources Research - Coalbed methane co-production is an efficient technique for producing gas from multiple coal reservoirs. In this study, four large-scale specimens were connected in...  相似文献   

10.
卤水提溴技术的发展与研究现状   总被引:4,自引:0,他引:4       下载免费PDF全文
综述了目前国内外主要卤水提溴技术的发展与研究现状,其中包括传统的水蒸汽蒸馏法和空气吹出法两大主流工艺以及树脂吸附法、气态膜法、乳状液膜法等新型提溴工艺。在分析工艺原理的基础上,对各工艺特点进行了比较。  相似文献   

11.
Since 1991 volunteers from the Canadian Gas Potential Committee (CGPC) have conducted assessments of undiscovered gas potential in Canada. Reports were published in 1997 and 2001. The 2001 CGPC report assessed all established and some conceptual exploration plays in Canada and incorporated data from about 29,000 discovered gas pools and gas fields. Mainly year-end 1998 data were used in the analysis of 107 established exploration plays. The CGPC assessed gas in place without using economic cut offs. Estimates of nominal marketable gas were made, based on the ratio between gas in place and marketable gas in discovered pools. Only part of the estimated nominal marketable gas actually will be available, primarily because of restrictions on access to exploration and the small size of many accumulations. Most plays were assessed using the Petrimes program where it could be applied. Arps-Roberts assessments were made on plays where too many discovered pools were present to use the Petrimes program. Arps-Roberts assessments were corrected for economic truncation of the discovered pool sample. Several methods for making such corrections were tried and examples of the results are shown and compared with results from Petrimes. In addition to assessments of established plays, 12 conceptual plays, where no discoveries have been made, were assessed using Petrimes subjective methodology. An additional 65 conceptual plays were recognized, discussed, and ranked without making a quantitative assessment. No nominal marketable gas was attributed to conceptual plays because of the high risk of failure in such plays. Nonconventional gas in the form of coalbed methane, gas hydrates, tight gas, and shale gas are discussed, but no nominal marketable gas is attributed to those sources pending successful completion of pilot study projects designed to demonstrate commercially viable production. Conventional gas resources in Canada include 340 Tcf of gas in place in discovered pools and fields and 252 Tcf of undiscovered gas in place. Remaining nominal marketable gas includes 96 Tcf in discovered pools and fields and 138 Tcf of undiscovered nominal marketable gas. The Western Canada Sedimentary Basin holds 61% of the remaining nominal marketable gas. Future discoveries from that area will be mainly in pools smaller than 2.5 Bcf of marketable gas and increasing levels of exploratory drilling will be required to harvest this undiscovered resource. A pragmatic, geologically focussed approach to the assessment of undiscovered gas potential by the CGPC provides a sound basis for future exploration and development planning. Peer reviewed assessment on a play-by-play basis for entire basins provides both detailed play information and the ability to evaluate new exploration results and their impact on overall potential.  相似文献   

12.
Stranded gas resources are defined for this study as gas resources in discrete accumulations that are not currently commercially producible, or producible at full potential, for either physical or economic reasons. Approximately 35 trillion cubic feet (TCF) of stranded gas was identified on Alaska’s North Slope. The commercialization of this resource requires facilities to transport gas to markets where sales revenue will be sufficient to offset the cost of constructing and operating a gas delivery system. With the advent of the shale gas revolution, plans for a gas pipeline to the conterminous US have been shelved (at least temporarily) and the State and resource owners are considering a liquefied natural gas (LNG) export project that targets Asian markets. This paper focuses on competitive conditions for Asian gas import markets by estimating delivered costs of competing supplies from central Asia, Russia, Indonesia, Malaysia, and Australia in the context of a range of import gas demand projections for the period from 2020 to 2040. These suppliers’ costs are based on the cost of developing, producing, and delivering to markets tranches of the nearly 600 TCF of recoverable gas from their own conventional stranded gas fields. The results of these analyses imply that Alaska’s gas exports to Asia will likely encounter substantial competitive challenges. The sustainability of Asia’s oil-indexed LNG pricing is also discussed in light of a potentially intense level of competition.  相似文献   

13.
14.
Light-photosynthesis curves for 9 species of benthic algae from the Hornsund fiord were determined. As a result of adaptation to the conditions in the Arctic, benthic algae from Spitsbergen have a low requirement of light. Saturation and compensation points are low and within a range typical for shadow-tolerant plants.The values for gas exchange rates indicate that Arctic algae have lower photosynthctic capacity than temperate species.  相似文献   

15.
There are two basic requirements for heavy-oil recovery processes: first, mobilize the bitumen, and second, have a drive mechanism deliver the mobilized bitumen to a production wellbore. In situ combustion has the potential to be an important heavy-oil recovery method. Before design of in situ combustion recovery processes can start, it is necessary as a first step to understand the kinetics of various complex chemical reactions and determine kinetic constants associated with the reactions. Even with modern reservoir simulation capabilities, this is a significant challenge. In this research, an Athabasca bitumen combustion tube experiment, conducted by the ISC Research Group at the University of Calgary, was history matched by using a reservoir thermal simulator to determine a set of kinetic parameters as well as the transport parameters for the system. The main results of the history match was a match of air injection rate, bitumen and gas production volumes, average product gas compositions, temperature profiles along the tube through time, and pressure. Gridding sensitivities were examined to determine if the derived kinetic and transport parameters were dependent on gridblock size. The results revealed that the grid was refined enough to sufficiently capture thermal, mass transfer, and reaction length scales. After this single match was achieved, the same constants were used to successfully predict several other combustion tube experiments. The results suggest that the fuel (coke) for high-temperature oxidation (HTO) originates mainly from low-temperature oxidation (LTO) and not from thermal cracking. This implies that the major control on HTO is upstream oxygen transfer into the LTO region. If LTO does not occur, then a relatively small amount of coke is deposited in the matrix due to thermal cracking and this may be insufficient to start or sustain HTO.  相似文献   

16.
From a geological perspective, deep natural gas resources generally are defined as occurring in reservoirs below 15,000 feet, whereas ultradeep gas occurs below 25,000 feet. From an operational point of view, deep may be thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas occurs in either conventionally trapped or unconventional (continuous-type) basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields.Exploration for deep conventional and continuous-type basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and state waters of the United States. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas also are high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet).Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin and accumulation of deep gas include the initial concentration of organic matter, the thermal stability of methane, the role of minerals, water, and nonhydrocarbon gases in natural gas generation, porosity loss with increasing depth and thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas.Technologic problems are among the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO2 and H2S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells (producing below 15,000 feet) is about 25%, a lack of geological and geophysical information continues to be a major barrier to deep gas exploration.Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries differ widely among different gas plays in different basins.Based on an analysis of natural gas assessments, deep gas holds significant promise for future exploration and development. Both basin-center and conventional gas plays could contain significant deep undiscovered technically recoverable gas resources.  相似文献   

17.
土壤N2O排放研究进展   总被引:10,自引:0,他引:10  
N2O不仅是一种重要的温室气体,而且还可以破坏臭氧层。随着人类活动的增加,其在大气中的浓度不断上升,对环境的影响也更加严重,因此,N2O的排放日益成为环境研究的热点问题。土壤是N2O的重要排放源。本文综合分析了土壤N2O排放研究的进展情况,主要包括:土壤N2O产生及排放的机理;影响N2O排放的主要因素;土壤N2O排放的时空特征以及全球N2O排放的模型估计;最后提出了今后的研究方向。  相似文献   

18.
我国是世界上第二大石油消费国和进口国,石油进口安全问题不容忽视。从我国石油的供需状况出发,分析研究了我国石油进口的空间格局和运输线路,指出了中存在的问题:来源上过于依赖中东地区,线路上过于依赖海上运输和马六甲通道。本文提出了加快建设中缅油气管道、兴建中巴原油管道、扩容中哈和中俄原油管道、加快东海和南海油田的开发4 点建议,旨在改善我国石油进口的安全形势,打造我国的东北、西北、西南陆上和海上四大油气进口通道的战略格局,使石油运输渠道多元化,实现石油进口的海陆统筹。  相似文献   

19.
张天媛  黄季夏  王利 《地理学报》2021,76(5):1122-1135
由于社会经济迅速发展,中国对能矿资源的需求量日益增加。因此,中国和资源大国俄罗斯展开了大量的能源贸易。在全球气候变暖、北极航道通航性逐渐提高的背景下,两国港口间的能源运输可通过东北航道完成,在时间、成本、安全性等方面将优于通过传统航道运输。本文采用加权平均旅行时间量化气候变化情景下2030—2070年中国港口到俄罗斯油气资源的可达时间,并建立海运成本体系,计算经由东北航道进行资源运输的成本,得到如下结论:① 中国港口到达俄罗斯石油资源的可达性优于天然气资源;② 中国港口的资源可达时间每十年平均减少7 h,南通港到达俄罗斯资源的可达性最佳;③ 中国港口的资源海运成本每10 a平均降低0.5万美元,从南通港出发的航线成本在所有港口中最低;④ 在高排放浓度情景下,以商船作为媒介的中国港口资源可达性提升潜力巨大,应用前景乐观。本文量化并评估了2030—2070年中俄港口间能源贸易的时间与成本,为中俄能源海上贸易运输提供了理论参考。  相似文献   

20.
尼日尔河三角洲油气工业地带,既是非洲最主要的两大油气工业地带之一,也是世界油气工业地带的重要组成部分。尼日尔河三角洲不仅油气资源极为丰富,而且与世界其他地区相比,其油气资源具有独特优势和特点。在分析尼日尔河三角洲油气资源的分布及生产布局特点的基础上,进一步分析其油气炼化工业的发展与布局,对进一步加强中-尼(尼日利亚)油气合作具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号