首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song  Yanchen  Wang  Enze  Peng  Yuting  Xing  Haoting  Wu  Kunyu  Zheng  Yongxian  Zhang  Jing  Zhang  Na 《Natural Resources Research》2021,30(6):4355-4377

The Paleogene upper Xiaganchaigou Formation (E32) is the most important source rock and reservoir in the Qaidam Basin. However, there are few studies on the processes of hydrocarbon accumulation in this formation; therefore, its hydrocarbon resource potential has not been estimated reasonably. This paper evaluates the hydrocarbon generation properties in light of an improved hydrocarbon generation and expulsion potential model. According to the geochemical characteristics of source rocks and the petrological features of reservoirs, the potentials of different resource types, including conventional oil, tight oil and shale oil, are quantified by combining the buoyancy-driven hydrocarbon accumulation depth (BHAD) and the lower limit for movable resource abundance. The results show that the source rocks are characterized by a large thickness (more than 1000 m), moderate organic matter content, high marginal maturity and a high conversion rate (50% hydrocarbons have been discharged before Ro?=?1%), which provide sufficient oil sources for reservoir formation. Moreover, the reservoirs in the Qaidam Basin consist mainly of low-porosity and low-permeability tight carbonates (porosity of 4.7% and permeability less than 1 mD). The maximum hydrocarbon generation, expulsion, retention and movable retention intensities at present are 350?×?104 t/km2, 250?×?104 t/km2, 130?×?104 t/km2 and 125?×?104 t/km2, respectively. The thresholds of hydrocarbon generation, expulsion and BHAD were 0.46% Ro, 0.67% Ro and 0.7% Ro, respectively. Moreover, the dynamic evolution process of hydrocarbon accumulation was divided into three evolution stages, namely, (a) initial hydrocarbon accumulation, (b) conventional hydrocarbon reservoir and shale oil accumulation and (c) unconventional tight oil accumulation. The conventional oil, tight oil and movable shale oil resource potentials were 10.44?×?108 t, 51.9?×?108 t and 390?×?108 t, respectively. This study demonstrates the good resource prospects of E32 in the Qaidam Basin. A comprehensive workflow for unconventional petroleum resource potential evaluation is provided, and it has certain reference significance for other petroliferous basins, especially those in the early unconventional hydrocarbon exploration stage.

  相似文献   

2.
An unconventional, continuous petroleum system consists of an accumulation of hydrocarbons that is found in low-matrix-permeability rocks and contain large amounts of hydrocarbons. Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation (T3x5) are currently regarded as the most prolific emerging unconventional gas plays in China. The conventional and systematical evaluation of T3x5 source rocks was carried out for the first time in the western Sichuan basin (WSD). Hydrocarbon generation and expulsion characteristics (including intensity, efficiency, and amount) of T3x5 source rocks were investigated. Results show that T3x5 source rocks are thick (generally >200 m), have high total organic content (TOC, ranging from 2.5 to 4.5 wt%), and dominated by III-type kerogen. These favorable characteristics result in a great hydrocarbon generating potential under the high thermal evolution history (R o > 1.2%) of the area. An improved hydrocarbon generation potential methodology was applied to well data from the area to unravel the hydrocarbon generation and expulsion characteristics of T3x5 source rocks in the WSD. Results indicate that the source rocks reached hydrocarbon expulsion threshold at 1.06% R o and the comprehensive hydrocarbon expulsion efficiency was about 60%. The amount of generation and expulsion from T3x5 source rocks was 3.14 × 1010 and 1.86 × 1010 t, respectively, with a residual amount of 1.28 × 1010 t within the source rocks. Continuous-type tight-sand gas was predicted to develop in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration (i.e., the hydrocarbon generation and expulsion center was located in Chengdu Sag), the Jurassic sandstone reservoirs were tight, and the gas expelled from the T3x5 source rocks migrated for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3 × 108 t. The T3x5 gas shale has good accumulation potential compared with several active US shale-gas plays. Volumetrically, the geological resource of shale gas is up to 1.05 × 1010 t. Small differences between the amounts calculated by volumetric method compared with that by hydrocarbon generation potential methodology may be due to other gas accumulations present within interbedded sands associated with the gas shales.  相似文献   

3.
The process of organic matter transformation into oil and gas is also a balance process of hydrocarbon transformation. This article probes to distinguish the oil expulsion history from gas expulsion history based on the hydrocarbon generation, hydrocarbon residual, and hydrocarbon expulsion processes of the source rocks. In this method, the first step is to study the hydrocarbon expulsion rate by means of hydrocarbon generation potential method; the second step is to study the oil generation rate by means of the heating–pressuring experiment method; the third step is to study the oil residual rate by means of the mathematical method. The difference between the values of oil generation rate and oil residual rate is defined as the oil expulsion rate, while that between the values of hydrocarbon expulsion rate and the gas expulsion rate is defined as the gas expulsion rate. Then, combined with the geological parameters of source rocks, the oil and gas expulsion history can be obtained. This study on Es1 Source rocks, Nanpu Sag, Bohai Bay Basin, China shows that the primary expulsion period of Es1 source rocks is Guantao–Minghuazhen period.  相似文献   

4.

Water saturation (Sw) is a vital parameter in the evaluation of hydrocarbon reservoir. Realistic estimation of Sw in shale reservoir is a challenging problem because of the presence of significant clay minerals and organic matter. The present study aims to estimate Sw of organic-rich Cambay Shale, Jambusar–Broach block, Cambay Basin, India, using an effective methodology and improved equation (TOC–clay equation), considering the appropriate corrections to counter the effect of clay minerals and organic matter in modifying resistivity. Advanced log like Litho-scanner has been utilized for the continuous estimation of clay content and total organic carbon (TOC), required for the estimation of Sw. Elemental capture spectroscopy and support vector regression were also applied for evaluation of clay content and TOC in one well where Litho-scanner log is not available. To investigate the effectiveness and applicability of the TOC–clay equation, results of Sw estimated from this equation and various other models have been compared with core Sw for a well. The analysis indicates that Sw derived from TOC–clay equation is having the closest agreement to core Sw data with an average absolute percentage error of 7.9% and coefficient of correlation 0.95. For other models, average absolute errors are significantly higher (16.8–32.7%). The application of TOC–clay equation will be useful for evaluation of the Cambay Shale reservoir. In addition, the resistivity-based TOC–clay equation used in this study is simple with a practical approach; it can be applied easily and efficiently for any organic-rich shale reservoir elsewhere.

  相似文献   

5.
An igneous hydrocarbon reservoir had been found in the Zhanhua depression, Bohai Bay Basin, eastern China. Two doleritic sills successively intruded into the immature source rock of the third member of the Shahejie Formation (Es3). The heat released from the magma changed the mineral composition of wall rocks and accelerated the maturity of organic matter. Thin hornfels and carbargilite zones were found next to the sills. The vitrinite reflectances (%Ro) of these heated wall rocks increased to at least 1.4% near the contacts (<50 m), and accumulation of oil was found in the hornfels zone and dolerite bodies. With the aim of understanding the influence of the sills on the hydrocarbon generation process, a complex heat conduction model was used to simulate the thermal history of the organic‐rich wall rocks, in which both the latent heat of crystallization of intrusions and vapourization heat of pore water in wall rocks were considered. The simulation results suggested that the cooling of each sill continued for about 0.1 Ma after its emplacement and the temperature of wall rocks was considerably raised. The peak temperature (Tpeak) that wall rocks experienced can reach 460–650°C in the region of 10 m away from the contacts. The thermal model was qualitatively verified by comparing the experimental data of vitrinite reflectances and mineral geothermometers of the wall rocks with the simulation results. Furthermore, we modelled the hydrocarbon generation of the source rocks based on the simulated thermal history. In the region of about 100 m from the contacts, the organic matter was heated and partially transformed into hydrocarbon within only a few 1000 years, which was significantly faster than the normal burial generation process.  相似文献   

6.
Climate signal in varve thickness: Lake La Cruz (Spain), a case study   总被引:1,自引:0,他引:1  
Lake La Cruz is a meromictic, karstic lake with annually laminated sediment formed by summer pulses of calcite deposition. The aim of this study was to explore the potential use of the laminated sediment from Lake La Cruz as a quantitative climate proxy, by calibrating lamina thickness against instrumental climate data. Statistical analysis of the relation between lamina thickness and the meteorological dataset indicated a high correlation between calcium carbonate lamina thickness and rainfall from December to March ( = 0.725, P < 0.01, n = 35). Winter rainfall anomalies in the area are, in turn, highly negatively correlated with the North Atlantic Oscillation index (NAO, r = 0.832; P < 0.01; n = 53). We propose a regression model to infer past winter rainfall from calcium carbonate laminae thickness. These results highlight new possibilities for paleoenvironmental research using calcite laminated sediment records as climate proxies, especially to study past rainfall variability.  相似文献   

7.
《Basin Research》2018,30(Z1):497-512
Shale of the Upper Cretaceous Slater River Formation extends across the Mackenzie Plain of the Canadian Northwest Territories and has potential as a regional source rock because of the high organic content and presence of both oil‐ and gas‐prone kerogen. An understanding of the thermal history experienced by the shale is required to predict any potential petroleum systems. Our study integrates multi‐kinetic apatite fission track (AFT) and apatite (U‐Th)/He (AHe) thermochronometers from a basal bentonite unit to understand the timing and magnitude of Late Cretaceous burial experienced by the Slater River Formation along the Imperial River. We use LA‐ICP‐MS and EPMA methods to assess the chemistry of apatite, and use these values to derive the AFT kinetic parameter rmr0. Our AFT dates and track lengths, respectively, range from 201.5 ± 36.9 Ma to 47.1 ± 12.3 Ma, and 16.8 to 10.2 μm, and single crystal AHe dates are between 57.9 ± 3.5 and 42.0 ± 2.5 Ma with effective uranium concentrations from 17 ppm to 36 ppm. The fission track data show no relationship with the kinetic parameter Dpar and fail the χ2‐test indicating that the data do not comprise a single statistically significant population. However, when plotted against their rmr0 value, the data are separated into two statistically significant kinetic populations with distinct track length distributions. Inverse thermal history modelling of both the multi‐kinetic AFT and AHe datasets, reveal that the Slater River Formation reached maximum burial temperatures of ~65–90 °C between the Turonian and Paleocene, indicating that the source rock matured to the early stages of hydrocarbon generation, at best. Ultimately, our data highlight the importance of kinetic parameter choice for AFT and AHe thermochronology, as slight variations in apatite chemistry may have significant implications on fission track and radiation damage annealing in apatite with protracted thermal histories through the uppermost crust.  相似文献   

8.
The northern Great Plains region of western Canada contains many saline and hypersaline lakes. These lakes exhibit great diversity in geochemical and sedimentological characteristics which results in a wide range of bedding features and lamination types. Because of the high brine salinities and supersaturation with respect to many carbonate and sulfate evaporitic minerals, chemical laminae and beds are the most common stratification types observed. Simple monomineralic carbonate or sulfate layers as well as beds composed of complex mixtures of aragonite, magnesite, hydromagnesite, mirabilite, gypsum, epsomite,and/or bloedite occur frequently in Holocene sequences from these saline lakes. In addition, biolaminae, including microbialite bedding and accretionary tufa and travertine deposits, are present. Due to the dominance of chemical sedimentary processes operating in these lakes, physical laminae are uncommon. Other observed bedding features and sedimentary structures consist of distinctive pedogenic-cryogenic dry zones, salt karst structures, and clastic dykes and diapirs. Although paleoenvironmental investigations of these well-bedded sequences have just recently begun, several basins provide examples of the nature of paleolimnological information that can be derived from the salt lakes of the northern Great Plains. The chemical and biological laminae preserved in the Holocene sequence of Waldsea Lake provide evidence for significant fluctuations in brine chemistry and chemocline depth in this meromictic basin. Freefight Lake, another hypersaline meromictic lake, contains a relatively thick sequence of rapidly deposited, deep-water salts underlain by finely laminated carbonates, sulfates, and microbial mat sediments. These very thin, undisturbed laminae, combined with exceedingly high rates of offshore evaporite mineral accumulation, provide an excellent opportunity for high resolution geochemical and hydrologic reconstructions in a part of the region distinguished by a paucity of other sources of paleoenvironmental information. Chappice Lake, a shallow, hypersaline brine pool, contains a wealth of paleoenvironmental information. Although the basin probably never experienced the deep-water conditions that earmark Waldsea and Freefight lakes, nonetheless, finely laminated and well-bedded sequences abound in the Holocene record of Chappice Lake. The endogenic magnesium and calcium carbonates and sulfates comprising these laminae can be used to interpret the history of brine chemistry fluctuations which may then help to understand past changes in the hydrologic budget and groundwater inflow.  相似文献   

9.
Gas generated and expelled from coals often results in economic gas accumulations. As a consequence, it is important to consider the theoretical aspects of these processes and to develop methods that can be used to assess coal as a potential source rock. On the basis of results of modeling hydrocarbon generation, expulsion, and retention in coals, two comprehensive indexes are proposed for assessing the quality and the nature of coal as a potential source rock. Theoretical charts of the two indexes are used to assess coals as potential source rocks in the Turpan-Hami Basin in northwestern China.  相似文献   

10.
In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carrière (PSC) mature forests were selected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can improve soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abundance, microbial biomass carbon and enzyme activity show an order of PSPSMCK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK. Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. P. sylvestris and P. simonii can effectively improve soil physicochemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The C mic :C ratio is an applicable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, P. sylvestris is better than P. simonii in fixing mobile dunes in sandy land.  相似文献   

11.

Oil from the Oligocene oil sands of the Lower Ganchaigou Formation in the Northern Qaidam Basin and the related asphaltenes was analyzed using bulk and organic geochemical methods to assess the organic matter source input, thermal maturity, paleo-environmental conditions, kerogen type, hydrocarbon quality, and the correlation between this oil and its potential source rock in the basin. The extracted oil samples are characterized by very high contents of saturated hydrocarbons (average 62.76%), low contents of aromatic hydrocarbons (average 16.11%), and moderate amounts of nitrogen–sulfur–oxygen or resin compounds (average 21.57%), suggesting that the fluid petroleum extracted from the Oligocene oil sands is of high quality. However, a variety of biomarker parameters obtained from the hydrocarbon fractions (saturated and aromatic) indicate that the extracted oil was generated from source rocks with a wide range of thermal maturity conditions, ranging from the early to peak oil window stages, which are generally consistent with the biomarker maturity parameters, vitrinite reflectance (approximately 0.6%), and Tmax values of the Middle Jurassic carbonaceous mudstones and organic-rich mudstone source rocks of the Dameigou Formation, as reported in the literature. These findings suggest that the studied oil is derived from Dameigou Formation source rocks. Furthermore, the source- and environment-related biomarker parameters of the studied oil are characterized by relatively high pristane/phytane ratios, the presence of tricyclic terpanes, low abundances of C27 regular steranes, low C27/C29 regular sterane ratios, and very low sterane/hopane ratios. These data suggest that the oil was generated from source rocks containing plankton/land plant matter that was mainly deposited in a lacustrine environment and preserved under sub-oxic to oxic conditions, and the data also indicate a potential relationship between the studied oil and the associated potential source rocks. The distribution of pristane, phytane, tricyclic terpanes, regular steranes and hopane shows an affinity with the studied Oligocene Lower Ganchaigou Formation oil to previously published Dameigou Formation source rocks. In support of this finding, the pyrolysis–gas chromatography results of the analyzed oil asphaltene indicate that the oil was primarily derived from type II organic matter, which is also consistent with the organic matter of the Middle Jurassic source rocks. Thus, the Middle Jurassic carbonaceous mudstones and organic rock mudstones of the Dameigou Formation could be significantly contributing source rocks to the Oligocene Lower Ganchaigou Formation oil sand and other oil reservoirs in the Northern Qaidam Basin.

  相似文献   

12.
Locating and quantifying overpressures are essential to understand basin evolution and hydrocarbon migration in deep basins and thickly sedimented continental margins. Overpressures influence sediment cohesion and hence fault slip in seismically active areas or failure on steep slopes, and may drive catastrophic fluid expulsion. They also represent a significant drilling hazard. Here, we present a method to calculate the pore pressure due to disequilibrium compaction. Our method provides an estimate of the compaction factor, surface porosity and sedimentation rate of each layer in a sediment column using a decompaction model and the constraints imposed by seismic data and geological observations. For a range of surface porosities, an ad hoc iterative equation determines the compaction factor that gives a calculated layer thickness that matches the observed thickness within a tolerance. The surface porosity and compaction factor are then used to obtain a density profile and a corresponding estimate of P‐wave velocity (Vp). The selected parameters are those that give a good match with both the observed and calculated layer thicknesses and Vp profiles. We apply our method to the centre of the Eastern Black Sea Basin (EBSB), where overpressures have been linked to a low‐velocity zone (LVZ) at ca. 5500–8500 m depth. These overpressures were generated by the relatively high sedimentation rate of ca. 0.28 m ka?1 of the low permeability organic‐rich Maikop formation at 33.9–20.5 Ma and an even higher sedimentation rate of ca. 0.85 m ka?1 at 13–11 Ma. We estimate a maximum pore pressure of ca. 138 MPa at ca. 8285 m depth, associated with a ratio of overpressure to vertical effective stress in hydrostatic conditions () of ca. 0.7. These values are lower than those presented in a previous study for the same area.  相似文献   

13.
The vegetation of the wasteland of Valika chemical industries near Manghopir road, Karachi was studied. Nine plant communities were recognized based on dominant species. In these plant communities the vegetation was disturbed, mostly halophytic and dominated bySuaeda fruticosa,Tamarix indica,Salsola baryosma,Cressa cretica,Atriplex griffithii,Haloxylon recurvum,Indigofera hochstetteri,Prosopis julifloraandChenopodium album.The physico-chemical properties of the soils were also analysed. Soil texture was mostly sandy loam, which exhibited slight variations in the water-holding capacity. The soils contained a sufficient amount of CaCO3and exhibited mostly alkaline soil pH. The soils of the different plant communities had scarcely any organic matter or inorganic phosphorus. The exchangeable sodium in the soils of many halophytic plant communities was high, with appreciable concentrations of potassium.  相似文献   

14.
Calcareous microbialitic laminated thin crust coated calcareous sandstone rocks occurs within depressions in the southern desert of Kuwait. It is few millimeters thick and consists of alternating dark colored calcareous laminae and light colored detritus-rich clayey laminae. Both types of laminae include calcified cyanobacteria and their extracellular polysaccharides (EPS). Authigenic calcite spicules and platelets of micron size agglutinated on EPS are the main constituents of the calcareous laminae. Calcareous and clayey laminae include detrital silt size quartz, feldspars and calcite grains. Alternation of calcareous and detrital-rich laminae, organosedimentary structures, and mineralogy of this crust may suggest that it has been developed as a result of the interaction between micro-organisms (cyanobacteria) and physiochemical conditions during successive wet and dry periods.  相似文献   

15.
Constraining the burial history of a sedimentary basin is crucial for accurate prediction of hydrocarbon generation and migration. Although the Ghadames Basin is a prolific hydrocarbon province, with recoverable oil discovered to date in excess of 3.5 billion bbl, exploration on the eastern margin is still limited and the prospectivity of the area depends on the identification of effective source rocks and the timing of hydrocarbon generation. Sonic velocity, apatite fission track (FT) and vitrinite reflectance analysis offer three complementary methods to determine burial history and provide independent analytical techniques to evaluate the timing and amount of exhumation. The results indicate that two phases of tectonic activity had the biggest influence on basin evolution: the Hercynian (Late Carboniferous–Triassic) and Alpine (Late Mesozoic/Cenozoic) tectonic events. Exhumation during the Hercynian tectonic event increases from the SE, where an almost complete Palaeozoic section is preserved, towards the NW. This study quantifies the significant regional Alpine exhumation of the southern and eastern margins of the basin, with important implications for the timing of hydrocarbon maturation and expulsion, particularly for the Silurian source rock interval. Incorporating elevated Alpine exhumation values into burial history models for wells in the eastern (Libyan) part of the basin allows calibration with available maturity (Roeq) data using moderate values of Hercynian erosion. The result is preservation of the generation potential of Silurian (Tanezzuft) source rocks until maximum burial during Mesozoic/Cenozoic time, which improves the chance for preservation of hydrocarbon accumulations following entrapment.  相似文献   

16.
The sediments from Lake Bosumtwi, Ghana contain a unique record of fine-scale (mm to sub-mm) laminations, which will provide a valuable annual chronometer for reconstructing paleoenvironmental changes in West Africa covering much of the last 1 Ma. Comparisons of laminae counts to independent 210Pb dates and the rise in anthropogenic “bomb” radiocarbon support the interpretation of the laminations in the uppermost sediments as registering annual events. Radiocarbon dates on in-situ fish-bone collagen are in agreement with varve counts, further supporting the annual nature of our varve chronology. Over the instrumental period (1925–1999), dark-varve thickness measurements are correlated with local rainfall (r = 0.54) and appear able to resolve decadal-scale changes in precipitation. The relationship between varve thickness and rainfall provides support for our interpretation that dark-colored varve thickness records catchment runoff during the rainy season rather than dust flux during the dry season. Dark laminae alternate with organic and carbonate-rich light laminae formed during the fall period of enhanced productivity. Downcore, varves undergo significant microstratigraphic and geochemical variations, but retain the same pattern of alternating clastic and organic-rich laminae, providing support that the laminae may represent annual time markers for reconstructions of the deeper part of the record.  相似文献   

17.
Sedimentological, mineralogical and compositional analyses performed on short gravity cores and long Kullenberg cores from meromictic Montcortès Lake (Pre-Pyrenean Range, NE Spain) reveal large depositional changes during the last 6,000 cal years. The limnological characteristics of this karstic lake, including its meromictic nature, relatively high surface area/depth ratio (surface area ~0.1 km2; z max = 30 m), and steep margins, facilitated deposition and preservation of finely laminated facies, punctuated by clastic layers corresponding to turbidite events. The robust age model is based on 17 AMS 14C dates. Slope instability caused large gravitational deposits during the middle Holocene, prior to 6 ka BP, and in the late Holocene, prior to 1,600 and 1,000 cal yr BP). Relatively shallower lake conditions prevailed during the middle Holocene (6,000–3,500 cal years BP). Afterwards, deeper environments dominated, with deposition of varves containing preserved calcite laminae. Increased carbonate production and lower clastic input occurred during the Iberian-Roman Period, the Little Ice Age, and the twentieth century. Although modulated by climate variability, changes in sediment delivery to the lake reflect modifications of agricultural practices and population pressure in the watershed. Two episodes of higher clastic input to the lake have been identified: 1) 690–1460 AD, coinciding with an increase in farming activity in the area and the Medieval Climate Anomaly, and 2) 1770–1950 AD, including the last phase of the Little Ice Age and the maximum human occupation in late nineteenth and early twentieth centuries.  相似文献   

18.
Mesozoic sediments are source rocks for nearly half the world’s hydrocarbon reserves. Hence, there is great interest in the oil industry to know the trap and sub-trappean sediment thickness and their extent in the trap covered regions of Jamnagar study area. The microbial prospecting method is applied in the Jamnagar sub-basin, Gujarat for evaluating the prospects for hydrocarbon exploration by investigating the anomalous abundance of n-pentane- and n-hexane-oxidizing bacteria of this area. A total of 150 near-surface soil samples were collected in Jamnagar sub-basin, Gujarat for the evaluation of hydrocarbon resource potential of the basin. In this study, bacterial counts for n-pentane-utilizing bacteria range between 1.09 × 102 and 9.89 × 105 cfu/g and n-hexane-utilizing bacteria range between 1.09 × 102 and 9.29 × 105 cfu/g. The adsorbed hydrocarbon gases consisting of ethane plus hydrocarbons (ΣC2+) of 1–977 ppb and n-pentane (nC5) of 1–23 ppb. The integrated geomicrobial and adsorbed soil gas studies showed the anomalous hydrocarbon zones nearby Khandera, Haripur, and Laloi areas which could probably aid to assess the true potential of the basin. Integrated geophysical studies have shown that Jamnagar sub-basin of Saurashtra has significant sediment thickness below the Deccan Traps and can be considered for future hydrocarbon exploration.  相似文献   

19.
Tian  Yapeng  Ju  Binshan  Wang  Xudong  Wang  Hongya  Hu  Jie  Huang  Yingsong  Liu  Nannan  Dong  Yintao 《Natural Resources Research》2021,30(5):3533-3549

The phase behavior of fluid is essential for predicting ultimate oil recovery and determining optimal production parameters. The pore size in shale porous media is nanopore, which causes different phase behaviors of fluid in unconventional reservoirs. Nanopores in shale media can be regard as semipermeable membrane to filter heavy components (sieving effect) in shale oil, which leads to the different distributions of fluid components and different phase behaviors. In addition, the phase behavior of fluid in nanopores can be significantly altered by large capillary pressure. In this paper, the phase behavior of fluid in shale reservoirs is investigated by a new two-phase flash algorithm considering sieving effect and capillary pressure. Firstly, membrane efficiency and capillary pressure are introduced to establish a thermodynamic equilibrium model that is solved by Rachford–Rice flash calculation and Newton–Raphson method. The capillary pressures in different pore sizes are calculated by the Young–Laplace equation. Then, the influences of sieving effect and capillary pressure on phase behavior are analyzed. The results indicate that capillary pressure can suppress the bubble point pressure of fluid in nanopores. The distributions of fluid components are different in various parts of shale media. In the unfiltered part, density and viscosity of fluid are higher. Finally, it is found that the membrane efficiency can be improved by CO2 injection. The minimum miscibility pressure for shale oil–CO2 system is also studied. The developed model provides a better understanding of the phase behavior of fluid in shale oil reservoirs.

  相似文献   

20.
Wind erodibility of major soils in the farming-pastoral ecotone of China   总被引:2,自引:0,他引:2  
Wind erosion and desertification are severe problems in China's farming-pastoral ecotone. In this study, wind erodibility of five major soils in both uncultivated and simulated cultivated conditions, were determined through wind tunnel tests at nine wind speeds ranging from 10 to 26 m s−1. The average wind erosion rate (g m−2 min−1) under the uncultivated condition (q0) for the five soils could be set in the order: chestnut soil (28.5)>brown soil (24.8)>sierozem (21.8)>chernozem (19.9)>fixed sandy soil (11.4). The highest natural wind erosion might take place in the semi-arid steppe zone where the Chestnut soils predominate. Cultivation can significantly accelerate wind erosion, the mean wind erosion rate under the cultivated condition (qc) for all five soils was 743.7 g m−2 min−1 in the following order: sandy soil (3313.2)>brown soil (227.2)>chernozem (221.8)>sierozem (85.1)>chestnut soil (81.2). For both the uncultivated and cultivated soil samples, the relationship between wind erosion rate (q) and wind speed (U) could be expressed in general as q=A eBU (A and B are constant coefficients). There was a critical wind speed for each soil type except for the sandy soil. Below the critical wind speed, cultivation reduced wind erosion rate possibly due to soil clodiness and roughness effects. Above the critical speed, cultivation greatly intensified wind erosion rates due to the break down of the original soil structure. The critical wind speed measured at 20 cm above the soil surface was 20 m s−1 for the brown soil, 14 m s−1 for chernozem and the chestnut soils, and 10 m s−1 for the sierozem. Among the five tested soils, the high wind erosion rate of the cultivated sandy soil showed its extreme sensitivity to cultivation, possibly because of the structureless nature of the loose sand. The “effect of cultivation on wind erosion” index, η (=qc/q0), increased exponentially with the increase of wind speed, indicating that under higher wind speed conditions, cultivation could result in more severe wind erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号