首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang’E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ~49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang’E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang’E-5 mission.  相似文献   

2.
We suggest a technique to determine the chemical and mineral composition of the lunar surface using artificial neural networks (ANNs). We demonstrate this powerful non-linear approach for prognosis of TiO2 abundance using Clementine UV-VIS mosaics and Lunar Soil Characterization Consortium data. The ANN technique allows one to study correlations between spectral characteristics of lunar soils and composition parameters without any restrictions on the character of these correlations. The advantage of this method in comparison with the traditional linear regression method and the Lucey et al. approaches is shown. The results obtained could be useful for the strategy of analyzing lunar data that will be acquired in incoming lunar missions especially in case of the Chandrayaan-1 and Lunar Reconnaissance Orbiter missions.  相似文献   

3.
We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 m) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.  相似文献   

4.
Lunar mare basalts, highland anorthosites and KREEP are the three major lunar rock types reported from the lunar surface. In the present study, we interpret the reflectance spectral behavior of lunar analog basalts including massive basalt, vesicular basalt and amygdaloidal basalt collected from the Deccan basaltic region, which are considered as equivalent of lunar mare basalts. Reflectance spectra of analog basalts were measured at three different environments: in the field, under controlled field conditions and in the lab. In field conditions the reflectance spectra were measured under 350-1050 nm spectral range. During controlled field and lab condition, reflectance spectra were measured under 350-2500 nm range covering the UV, visible, NIR, and SWIR regions. The spectral characteristics of basalts measured under different environments and their merits and demerits were discussed. However, lab spectra have given clear, reliable diagnostic spectral information for our present objective. The major oxides and minerals of analog basalts were compared with lunar mare basalts. The presence of Ca-pyroxene, ferrous and ferric iron and their diagnostic spectral features in basalts are discussed for study of lunar mare region.  相似文献   

5.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft will orbit the Moon at an altitude of ≈50 km with a payload that includes the Ultraviolet Spectrometer (UVS) instrument, which will obtain high spectral resolution measurements at near-ultraviolet and visible wavelengths (≈231-826 nm). When LADEE/UVS observes the lunar limb from within the shadow of the Moon it is anticipated that it will detect a lunar horizon glow (LHG) due to sunlight scattered from submicron exospheric dust, as well as emission lines from exospheric gases (particularly sodium), in the presence of the bright coronal and zodiacal light (CZL) background. A modularized code has been developed at NMSU for simulations of scattered light sources as observed by orbiting instruments in lunar shadow. Predictions for the LADEE UVS and star tracker cameras indicate that LHG, sodium (Na) emission lines, and CZL can be distinguished based on spatial morphology and spectral characteristics, with LHG dominant at blue wavelengths (∼250-450 nm) and small tangent heights. If present, LHG should be readily detected by LADEE/UVS and distinguishable from other sources of optical scattering. Observations from UVS and the other instruments aboard LADEE will significantly advance our understanding of how the Moon interacts with the surrounding space environment; these new insights will be applicable to the many other airless bodies in the solar system.  相似文献   

6.
Lunar dust: The Hazard and Astronaut Exposure Risks   总被引:1,自引:0,他引:1  
This paper reviews the characterisation of lunar dust or regolith, the toxicity of the dust and associated health effects, the techniques for assessing the health risks from dust exposure and describes the measures used or being developed to mitigate exposure. Lunar dust is formed from micrometeorite impacts onto the Moon’s surface. The hypervelocity impacts result in communition and the formation of sharp and clingy agglutinates. The dust particles vary in size with the smallest being less than 10 μm. If the chemical reactive particles are deposited in the lungs, they may cause respiratory disease. During lunar exploration, the astronaut’s spacesuits will become contaminated with lunar dust. The dust will be released into the atmosphere when the suits are removed. The exposure risks to health will need to be assessed by relating to a permissible exposure limit. During the Apollo missions, the astronauts were exposed to lunar dust. Acute health effects from dust inhalation exposure included sore throat, sneezing and coughing. Long-term exposure to the dust may cause a more serious respiratory disease similar to silicosis. On future missions the methods used to mitigate exposure will include providing high air recirculation rates in the airlock, the use of a “Double Shell Spacesuit” so that contaminated spacesuits are removed before entering the airlock, the use of dust shields to prevent dust accumulating on surfaces, the use of high gradient magnetic separation to remove surface dust and the use of solar flux to sinter and melt the regolith around the spacecraft.  相似文献   

7.
The lunar atmosphere and magnetic field are very tenuous. The solar wind, therefore, interacts directly with the lunar surface material and the dominant nature of interaction is essentially complete absorption of solar-wind particles by the surface material resulting in no upstream bowshock, but a cavity downstream. The solar-wind nitrogen ion species induce and undergo a complex set of reactions with the elements of lunar material and the solar-wind-derived trapped elements. The nitrogen concentration indigeneous to the lunar surface material is practically nil. Therefore any nitrogen and nitrogen compounds found in the lunar surface material are due to the solar-wind implantation of nitrogen ions. The flux of the solar-wind nitrogen ion species is about 6×103 cm–2 s–1. Since there is no evidence for accumulation of nitrogen species in the lunar surface material, the outflux of nitrogen species from the lunar material to the atmosphere is the same as the solar-wind nitrogen ion flux. The species of the outflux are primarily NO and NH3, and their respective concentrations in the near surface lunar atmosphere are found by calculation to be 327 and 295 cm–3. The calculated concentration of NH3 seems to be consistent with the sunrise concentration results of the mass spectrometer implanted on the lunar surface. This is not the case for the concentration of NO. According to the presently calculated concentration value of NO, the mass spectrometer should have detected NO at sunrise, but no report was made for its detection. There is also discrepancy about the concentration of N2 which is explained in this paper. The concentrations of nitrogen species in the lunar material at the time of sample collection on the Moon remained about the same when the samples were analyzed on the Earth. However, no specific experiment was planned to detect the nitrogen species in the lunar material samples.  相似文献   

8.
The spectral coefficients of the selenoid have been obtained by inverting the potential series for lunar gravity. The reference value of the lunar level surface has been determined on the base of the mean radius of lunar topography. This enables to evaluate the parameters of the tri-axial reference ellipsoid best fitted to the lunar level surface.  相似文献   

9.
The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.  相似文献   

10.
By applying our understanding of lunar space weathering processes, we can predict how space weathering will effect the soil properties on Mercury. In particular, the extreme temperature range on Mercury may result in latitudinal variations in the size distribution of npFe0, and therefore the spectral properties of the soil.  相似文献   

11.
Abstract— We propose that argon‐40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere, will lead to a similar or smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the mercurian atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. We assume a fractal distribution of distance to a connected pore space, with the shortest distance increasing with depth. Given this “rock size” distribution, we show that the diffusive flux is not a unique function of temperature. Even though the diffusion coefficient is an exponential function of temperature, the flux to the surface is fairly insensitive to the temperature.  相似文献   

12.
We propose a new scenario of the lunar origin, which is a natural extension of planetary formation processes studied so far by us in Kyoto. According to these studies, the Earth grew up in a gaseous solar nebula and, consequently, the sphere of its gravitational influence (i.e., the Hill sphere of the Earth) was filled by a gas forming a dense primordial atmosphere of the Earth. In the later stages, this atmosphere as well as the solar nebula was dissipated gradually, owing to strong activities of the early-Sun in a T Tauri-stage.In the present and the subsequent papers, we study a series of dynamical processes where a lowenergy (i.e., slightly unbound) planetisimal is trapped within the terrestrial Hill sphere, under the above-mentioned circumstances that the gas density of the primordial atmosphere is gradually decreasing. It is clear that two conditions must be satisfied for the lunar origin: first, an unbound planetesimal entering the Hill sphere have to dissipate its kinetic energy and come into a bound orbit before it escapes from the Hill sphere and, second, the bound planetisimal never falls onto the surface of the Earth.In this paper we study the first condition by calculating the oribital motion of a planetesimal in the Hill sphere, which is affected both by solar gravity and by atmospheric gas drag. The results show that a low-energy planetisimal with the lunar mass or less can be trapped in the Hill sphere with a high probability, if it enters the Hill sphere at stages before the atmospheric density is decreased to about 1/50 of the initial value.In the subsequent paper, the second condition will be studied and it will be shown that a tidal force, among other forces, is very important for a trapped planetesimal to avoid collision with the Earth and stay eternally in the Hill sphere as a satellite.  相似文献   

13.
Skylab S-192 multispectral scanner data, in 12 bands covering wavelengths from 0.41 to 2.3 μm, have been investigated to identify and classify geologic units of the lunar surface. Seventeen spectral cluster classes have been identified, seven in the highlands, seven in the maria, and three of which occur in both or in border regions. This finding may be roughly indicative of the relative heterogeneity of these regions. It implies that there is as much heterogeneity in the highlands as in the maria. This work extends the spectral and aerial coverage of similar studies of the lunar surface and provides useful data for comparison for most of the lunar near side.  相似文献   

14.
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data.  相似文献   

15.
A hypothetical scattering layer in the upper atmosphere is unable to explain quantitatively the variations of lunar eclipses described by Danjon's law.  相似文献   

16.
Reflectance Spectral Characteristics of Lunar Surface Materials   总被引:2,自引:0,他引:2  
Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm. It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.  相似文献   

17.
There is good evidence for the existence of very small amounts of methane, ammonia and carbon dioxide in the very tenuous lunar atmosphere which consists primarily of the rare gases helium, neon and argon. All of these gases, except40Ar, originate from solar wind particles which impinge on the lunar surface and are imbedded in the surface material. Here they may form molecules before being released into the atmosphere, or may be released directly, as is the case for rare gases. Evidence for the existence of the molecular gas species is based on the pre-dawn enhancement of the mass peaks attributable to these compounds in the data from the Apollo 17 Lunar Mass Spectrometer. Methane is the most abundant molecular gas but its concentration is exceedingly low, 1 × 103 mol cm?3, slightly less than36Ar, whereas the solar wind flux of carbon is approximately 2000 times that of36Ar. Several reasons are advanced for the very low concentration of methane in the lunar atmosphere.  相似文献   

18.
Lunar highland region and associated craters are mostly composed of anorthosite. In the present study, we studied the reflectance spectra of terrestrial anorthosites collected from Sittampundi Anorthosites Complex, which is considered as equivalent (simulant) of lunar highland anorthosites. The objective of the study is to interpret diagnostic spectral features of analog anorthosite for remotely exploring lunar highland region. Reflectance spectra of anorthosites were measured under two different environments, such as controlled field and laboratory conditions. In these two procedures, the laboratory spectra give clear, diagnostic spectral information in the present study. Reflectance spectra captured under 350-2500 nm covering UV, Visible, NIR, and SWIR part of the electromagnetic spectrum. The spectral characteristics of anorthosites measured under various parts of electromagnetic spectrum have diagnostic absorption features at 380-387, 700-740, 930-1100, 1160-1200, 1415, 1920, 2200 and 2330 nm correspondingly due to plagioclase UV absorption, Fe3+ electron transition absorption, Fe2+ pyroxene and olivine absorption, OH/Mn3+ crystal transition absorption, pyroxene absorption, Al-OH absorption and Mg-OH absorption. Mineralogical and chemical analyses were carried out for four anorthosites and compared with the results of chemical component of lunar anorthosite. The percentage of plagioclase content, relative abundance of low and high calcium pyroxene and olivine in different anorthosite samples are correlated with the albedo range, absorption shape, absorption centers and band depth. The similarity in the diagnostic spectral features of the anolog anorthosite with lunar anorthosites could be effectively utilized for remotely mapping the lunar highland region.  相似文献   

19.
A review of the theory for the electromagnetic functional used to date to determine the lunar conductivity profile from spectral analyses of lunar magnetometer data is presented. The “hard” boundary condition used by Sonett et al. (1971a, b) and others appears to be a good approximation for the sunlit lunar hemisphere. The use of only the first spherical harmonic in the electromagnetic functional is not justified; further, there are certain classes of lunar models where the transverse magnetic modal response may not be neglected.  相似文献   

20.
Abstract— Plans are underway for spacecraft missions to the planet Mercury beginning in the latter part of this decade (NASA's MESSENGER (MErcury, Surface, Space ENvironment, GEochemistry, Ranging) and ESA's BepiColombo). Mercury is an airless body whose surface is apparently very low in ferrous iron. Much of the mercurian surface material is expected to be optically mature, a state produced by the “space weathering” process from direct exposure to the space environment. If appropriate analog terrains can be identified on the Moon, then study of their reflectance spectra and composition will improve our understanding of space weathering of low‐Fe surfaces and aid in the interpretation of data returned from Mercury by the spacecraft. We have conducted a search for areas of the lunar surface that are optically mature and have very low ferrous iron content using Clementine ultraviolet‐visible (UV‐vis) image products. Several regions with these properties have been identified on the farside. These areas, representing mature pure anorthosites (>90% plagioclase feldspar), are of interest because only relatively immature pure anorthosites have previously been studied with Earth‐based spectrometry. A comparison of Mercury with the lunar analogs reveals similarities in spectral characteristics, and there are hints that the mercurian surface may be even lower in FeO content than the lunar pure anorthosites. We also investigate the potential for use of spectral features other than the commonly studied “1 μm” mafic mineral absorption band as tools for compositional assessment when spacecraft spectral measurements of Mercury become available. Most low‐Fe minerals plausibly present on Mercury lack absorption bands, but plagioclase possesses an iron impurity absorption at 1.25 μm. Detection of this diagnostic band may be possible in fresh crater deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号