首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
The pressure-induced A-B phase transition of synthetic Rb-tetra-ferri-annite (Rb-TFA) mica was studied theoretically by means of Density Functional Theory (DFT) method. The calculations show that Rb-TFA keeps a Franzini A-type structure up to at least 5.39 GPa of pressure, whereas at higher pressure, it transforms to a Franzini B-type structure. The negative value of the tetrahedral rotation angle α = −4.68° has appeared at 5.56 GPa of calculated pressure. This result is in a relatively good agreement with experimentally estimated phase transition area in the range of 3.36−3.84 GPa. The energy difference between the A and B structures is very small (ΔE = 8 kJ/mol). The detailed analysis of the optimized structural data shows minimal changes in the structure of Rb-TFA after the pressure-induced phase transition.  相似文献   

2.
 The solubility of hydroxyl in the α, β and γ phases of (Mg,Fe)2SiO4 was investigated by hydrothermally annealing single crystals of San Carlos olivine. Experiments were performed at a temperature of 1000° or 1100 °C under a confining pressure of 2.5 to 19.5 GPa in a multianvil apparatus with the oxygen fugacity buffered by the Ni:NiO solid-state reaction. Hydroxyl solubilities were determined from infrared spectra obtained of polished thin sections in crack-free regions ≤100 μm in diameter. In the α-stability field, hydroxyl solubility increases systematically with increasing confining pressure, reaching a value of ∼20,000 H/106Si (1200 wt ppm H2O) at the α-β phase boundary near 13 GPa and 1100 °C. In the β field, the hydroxyl content is ∼400,000 H/106Si (24,000 wt ppm H2O) at 14–15 GPa and 1100 °C. In the γ field, the solubility is ∼450,000 H/106Si (27,000 wt ppm H2O) at 19.5 GPa and 1100 °C. The observed dependence of hydroxyl solubility with increasing confining pressure in the α phase reflects an increase in water fugacity with increasing pressure moderated by a molar volume term associated with the incorporation of hydroxyl ions into the olivine structure. Combined with published results on the dependence of hydroxyl solubility on water fugacity, the present results for the α phase can be summarized by the relation C OH = A(T)fnH2Oexp(−PΔV/RT), where A(T) = 1.1 H/106Si/MPa at 1100 °C, n = 1, and ΔV = 10.6×10–6 m3/mol. These data demonstrate that the entire present-day water content of the upper mantle could be incorporated in the mineral olivine alone; therefore, a free hydrous fluid phase cannot be stable in those regions of the upper mantle with a normal concentration of hydrogen. Free hydrous fluids are restricted to special tectonic environments, such as the mantle wedge above a subduction zone. Received: 10 February 1995 / Accepted: 23 October 1995  相似文献   

3.
The reaction glaucophane + 2 diopside + 2 quartz = tremolite + 2 albite is proposed to model the transition from the blueschist to greenschist facies. This reaction was investigated experimentally over the range of 1.0–2.1 GPa and 500–800°C using synthetic phases in the chemical system Na2O–CaO–MgO–Al2O3–SiO2–H2O. Reversals of this reaction were possible at 500 and 550°C and growth of the low-pressure assemblage at 600°C; however, at temperatures of 600°C and higher and at pressures above 1.6 GPa omphacite nucleation (at the expense of diopside and albite) became quite strong and prevented attaining clear reversals of this reaction. Compositional changes in the amphiboles were determined by both electron microprobe analyses and correlations between unit-cell dimensions and composition. Glaucophane and particularly tremolite showed clear signs of compositional re-equilibration and merged to a single amphibole of winchite composition by about 754°C. These data were used to model the miscibility gap between glaucophane and tremolite using either the asymmetric multicomponent formulism parameters of W TR,GL of 68 kJ with αTR of 1.0 and αGL of 0.75 or a simple two-site asymmetric thermodynamic mixing expression with Margules parameters W NaCa of 13.4 kJ and W CaNa of 19.3 kJ. Combination of these thermodynamic models of the miscibility gap with extant thermodynamic data for the other phases yields a calculated location of the above reaction, involving pure diopside and albite, that is in good agreement with the observed experimental reversals and amphibole compositions over the range of 0.94–1.93 GPa and 400–754°C. The calculated effect of jadeite solid solution into diopside is to reduce the dP/dT slope from 0.0028 to 0.0021 GPa/°C and decrease the pressure by 0.28 GPa at 754°C. The dP/dT slope of this reaction boundary lies close to a linear geotherm of 13°C/km and is consistent with the slopes of other solid–solid reactions that have been used to model the blueschist-to-greenschist facies transition.  相似文献   

4.
The thermoelastic behavior of a natural clintonite-1M [with composition: Ca1.01(Mg2.29Al0.59Fe0.12)Σ3.00(Si1.20Al2.80)Σ4.00O10(OH)2] has been investigated up to 10 GPa (at room temperature) and up to 960°C (at room pressure) by means of in situ synchrotron single-crystal and powder diffraction, respectively. No evidence of phase transition has been observed within the pressure and temperature range investigated. PV data fitted with an isothermal third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 457.1(2) ?3, K T0 = 76(3)GPa, and K′ = 10.6(15). The evolution of the “Eulerian finite strain” versus “normalized stress” shows a linear positive trend. The linear regression yields Fe(0) = 76(3) GPa as intercept value, and the slope of the regression line leads to a K′ value of 10.6(8). The evolution of the lattice parameters with pressure is significantly anisotropic [β(a) = 1/3K T0(a) = 0.0023(1) GPa−1; β(b) = 1/3K T0(b) = 0.0018(1) GPa−1; β(c) = 1/K T0(c) = 0.0072(3) GPa−1]. The β-angle increases in response to the applied P, with: βP = β0 + 0.033(4)P (P in GPa). The structure refinements of clintonite up to 10.1 GPa show that, under hydrostatic pressure, the structure rearranges by compressing mainly isotropically the inter-layer Ca-polyhedron. The bulk modulus of the Ca-polyhedron, described using a second-order BM-EoS, is K T0(Ca-polyhedron) = 41(2) GPa. The compression of the bond distances between calcium and the basal oxygens of the tetrahedral sheet leads, in turn, to an increase in the ditrigonal distortion of the tetrahedral ring, with ∂α/∂P ≈ 0.1°/GPa within the P-range investigated. The Mg-rich octahedra appear to compress in response to the applied pressure, whereas the tetrahedron appears to behave as a rigid unit. The evolution of axial and volume thermal expansion coefficient α with temperature was described by the polynomial α(T) = α0 + α1 T −1/2. The refined parameters for clintonite are as follows: α0 = 2.78(4) 10−5°C−1 and α1 = −4.4(6) 10−5°C1/2 for the unit-cell volume; α0(a) = 1.01(2) 10−5°C−1 and α1(a) = −1.8(3) 10−5°C1/2 for the a-axis; α0(b) = 1.07(1) 10−5°C−1 and α1(b) = −2.3(2) 10−5°C1/2 for the b-axis; and α0(c) = 0.64(2) 10−5°C−1 and α1(c) = −7.3(30) 10−6°C1/2for the c-axis. The β-angle appears to be almost constant within the given T-range. No structure collapsing in response to the T-induced dehydroxylation was found up to 960°C. The HP- and HT-data of this study show that in clintonite, the most and the less expandable directions do not correspond to the most and the less compressible directions, respectively. A comparison between the thermoelastic parameters of clintonite and those of true micas was carried out.  相似文献   

5.
The crystal structure of chromite FeCr2O4 was investigated to 13.7 GPa and ambient temperature with single-crystal X-ray diffraction techniques. The unit-cell parameter decreases continuously from 8.3832 (5) to 8.2398 (11) Å up to 11.8 GPa. A fit to the Birch–Murnaghan equation of state (EoS) based on the P–V data gives: K 0 = 209 (13) GPa, K′ = 4.0 (fixed), and V 0 = 588 (1) Å3. The FeO4 tetrahedra and CrO6 octahedra are compressed isotropically with pressure with their Fe–O and Cr–O bond distances decreasing from 1.996 (6) to 1.949 (7) Å and from 1.997 (3) to 1.969 (7) Å, respectively. The tetrahedral site occupied by the Fe2+ cation is more compressible than the octahedral site occupied by the Cr3+ cation. The resulting EoS parameters for the tetrahedral and the octahedral sites are K 0 = 147 (9) GPa, K′ = 4.0 (fixed), V 0 = 4.07 (1) Å3 and K 0 = 275 (24) GPa, K′ = 4.0 (fixed), V 0 = 10.42 (2) Å3, respectively. A discontinuous volume change is observed between 11.8 and 12.6 GPa. This change indicates a phase transition from a cubic (space group Fd-[`3]{\overline{3}} m) to a tetragonal structure (space group I41 /amd). At the phase transition boundary, the two Cr–O bonds parallel to the c-axis shorten from 1.969 (7) to 1.922 (17) Å and the other four Cr–O bonds parallel to the ab plane elongate from 1.969 (7) to 1.987 (9) Å. This anisotropic deformation of the octahedra leads to tetragonal compression of the unit cell along the c-axis. The angular distortion in the octahedron decreases continuously up to 13.7 GPa, whereas the distortion in the tetrahedron rises dramatically after the phase transition. At the pressure of the phase transition, the tetrahedral bond angles along the c-axis direction of the unit cell begin decreasing from 109.5° to 106.6 (7)°, which generates a “stretched” tetrahedral geometry. It is proposed that the Jahn–Teller effect at the tetrahedrally coordinated Fe2+ cation becomes active with compression and gives rise to the tetrahedral angular distortion, which in turn induces the cubic-to-tetragonal transition. A qualitative molecular orbital model is proposed to explain the origin and nature of the Jahn–Teller effect observed in this structure and its role in the pressure-induced phase transition.  相似文献   

6.
 Coexisting muscovite and paragonite have been observed in an eclogite from the Sesia–Lanzo Zone (Western Alps, Italy). The P-T conditions of this eclogite reached 570–650 °C and 19–21 kbar and the rocks show several stages of mineral growth during their retrograde path, ranging from the subsequent lower-P eclogite facies to the blueschist facies and then the greenschist facies. Muscovite and paragonite are very common in these rocks and show two texturally different occurrences indicating equilibrium and non-equilibrium states between them. In one mode of occurrence they coexist in equilibrium in the lower-P eclogite facies. In the same rock muscovite ± albite also replaced paragonite during a greenschist-facies overprint, as evidenced by unique across – (001) layer boundaries. The chemical compositions of the lower-P eclogite-facies micas plot astride the muscovite – paragonite solvus, whereas the compositions of the greenschist-facies micas lie outside the solvus and indicate disequilibrium. The TEM observations of the textural relations of the greenschist-facies micas imply structural coherency between paragonite and muscovite along the layers, but there is a sharp discontinuity in the composition of the octahedral and tetrahedral sheets across the phase boundary. We propose that muscovite formed through a dissolution and recrystallization process, since no gradual variations toward the muscovite – paragonite interfaces occur and no intermediate, homogeneous Na-K phase has been observed. Because a solid-state diffusion mechanism is highly unlikely at these low temperatures (300–500 °C), especially with respect to octahedral and tetrahedral sites, it is assumed that H2O plays an important role in this process. The across-layer boundaries are inferred to be characteristic of such non-equilibrium replacement processes. The characterization of these intergrowths is crucial to avoiding erroneous assumptions regarding composition and therefore about the state of equilibrium between both micas, which in turn may lead to misinterpretations of thermometric results. Received: 3 February 1999 / Accepted: 19 October 1999  相似文献   

7.
Brackets on the melting temperature of K2CO3 were experimentally determined at 1.86 ± 0.02 GPa (1,163–1,167°C), 2.79 ± 0.03 GPa (1,187–1,195°C), and 3.16 ± 0.04 GPa (1,183–1,189°C) in a piston-cylinder apparatus. These new data, in combination with published experiments at low pressure (<0.5 GPa), establish the K2CO3 fusion curve to 3.2 GPa. On the basis of these experiments and published thermodynamic data for crystalline and liquid K2CO3, the high-pressure density and compressibility of K2CO3 liquid were derived from the fusion curve. The pressure dependence of the liquid compressibility (K0 = dK 0/dP, where K 0 = 1/β0) is between 16.2 and 11.6, with a best estimate of 13.7, in a third-order Birch–Murnaghan equation of state (EOS). This liquid K0 leads to a density of 2,175 ± 36 kg/m3 at 4 GPa and 1,500°C, which is ∼30% lower than that reported in the literature on the basis of the falling-sphere method at the same conditions. The uncertainty in the liquid K0 leads to an error in melt density of ± 2% at 4 GPa; the error decreases with decreasing pressure. With a K0 of 13.7, the compressibility of K2CO3 at 1,500°C and 1 bar (K 0 = 3.8 GPa) drops rapidly with increasing pressure ( ), which prevents a density crossover with silicate melts, such as CaAlSi2O8 and CaMgSi2O6, at upper mantle depths.  相似文献   

8.
An eclogite barometer has profound importance in the study of upper mantle processes and potential application to diamond prospecting. Studies on the partitioning of Li between clinopyroxene (cpx) and garnet (grt) in natural samples have shown that this particular element is very sensitive to changes in pressure and could be calibrated as the barometer demanded for bimineralic eclogites. Experiments were performed from 4 to 13 GPa and 1,100–1,400°C in the CMAS (CaO, MgO, Al2O3, SiO2) system with Li added as Li3PO4 to quantify this pressure dependence into a barometer expressed in the following equation: P = (0.00255T – ln K d)/0.2351 where P is in GPa, T is in °C and K d is defined as the partition coefficient of Li (in ppm) between clinopyroxene and garnet. The experimental pressures are reproduced to ±0.38 GPa (1σ) by this equation. This barometer is strictly applicable only to CMAS. Experiments at 1,300°C, 8–12 GPa showed that Henry’s Law is fulfilled for Li partitioning between cpx and grt in the concentration range of approximately 0.01–1 wt% Li. Direct application of the equation to experiments in natural systems performed at 1,300°C from 4 to 13 GPa consistently overestimates pressures by approximately 2 GPa. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We present H2O analyses of MgSiO3 pyroxene crystals quenched from hydrous conditions in the presence of olivine or wadsleyite at 8–13.4 GPa and 1,100–1,400°C. Raman spectroscopy shows that all pyroxenes have low clinoenstatite structure, which we infer to indicate that the crystals were high clinoenstatite (C2/c) during conditions of synthesis. H2O analyses were performed by secondary ion mass spectrometry and confirmed by unpolarized Fourier transform infrared spectroscopy on randomly oriented crystals. Measured H2O concentrations increase with pressure and range from 0.08 wt.% H2O at 8 GPa and 1,300°C up to 0.67 wt.% at 13.4 GPa and 1,300°C. At fixed pressure, H2O storage capacity diminishes with increasing temperature and the magnitude of this effect increases with pressure. This trend, which we attribute to diminishing activity of H2O in coexisting fluids as the proportion of dissolved silicate increases, is opposite to that observed previously at low pressure. We observe clinoenstatite 1.4 GPa below the pressure stability of clinoenstatite under nominally dry conditions. This stabilization of clinoenstatite relative to orthoenstatite under hydrous conditions is likely owing to preferential substitution of H2O into the high clinoenstatite polymorph. At 8–11 GPa and 1,200–1,400°C, observed H2O partitioning between olivine and clinoenstatite gives values of D ol/CEn between 0.65 and 0.87. At 13 GPa and 1,300°C, partitioning between wadsleyite and clinoenstatite, D wd/CEn, gives a value of 2.8 ± 0.4.  相似文献   

10.
Metabasites with eclogite facies relics occur in northern Sardinia as massive to strongly foliated lenses or boudins embedded within low- to medium-grade rocks (Anglona) and migmatites (NE Sardinia). U–Pb zircon dating yielded 453 ± 14, 457 ± 2 and 460 ± 5 Ma as the protolith ages; 400 ± 10 and 403 ± 4 Ma have been interpreted as the ages of the HP event and 352 ± 3 and 327 ± 7 Ma as the ages of the main Variscan retrograde events. A pre-eclogite stage is documented by the occurrence of tschermakite, zoisite relics within garnet porphyroblasts (Punta de li Tulchi) and an edenite–andesine inclusion within a relict kyanite porphyroblast (Golfo Aranci). Four main metamorphic stages have been distinguished in the eclogite evolution: (1) eclogite stage, revealed by the occurrence of armoured omphacite relics within garnet porphyroblasts. The Golfo Aranci eclogites also include kyanite, Mg-rich garnet and pargasite; (2) granulite stage, producing orthopyroxene and clinopyroxene–plagioclase symplectites replacing omphacite. At Golfo Aranci, the symplectitic rims around relict kyanite consist of sapphirine, anorthite, corundum and spinel; (3) amphibolite stage, leading to the formation of amphibole–plagioclase kelyphites between garnet porphyroblasts and pyroxene–plagioclase symplectites and to the growth of cummingtonite on orthopyroxene. Tschermakite to Mg-hornblende, plagioclase, cummingtonite, ilmenite, titanite and biotite are coexisting phases; (4) greenschist to sub-greenschist stage, defined by the appearance of actinolite, chlorite, epidote ss, titanite, sericite and prehnite. The following PT ranges have been estimated for the different stages. Eclogite stage 550–700°C; 1.3–1.7 GPa; granulite stage 650–900°C; 0.8–1.2 GPa, clustering in the range 1.0–1.2 GPa; amphibolite stage 550–740°C; 0.3–0.7 GPa; greenschist stage 300–400°C; 0.2–0.3 GPa. Comparable ranges characterise the other Variscan massifs in Europe; eclogite stage: T = 530–800°C; P from 0.7–1.1 to 1.7 ± 0.3 GPa; granulite stage T = 760–870°C and P from 1.1–1.4 to 7.2–9.9 GPa, clustering around 1.0–1.2 GPa. Whole-rock chemistry: Sardinian eclogites are N- to T-MORB; European ones N- to E-MORB or calc-alkaline.  相似文献   

11.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   

12.
 The densification and structural changes in SiO2 glass compressed up to 43.4 GPa by shock experiments are investigated quantitatively by the X-ray diffraction technique. Direct structural data (average Si–O and Si–Si distances and Si–O–Si angles, coordination number of the Si atom) of these shock-densified SiO2 glasses have been obtained by analyzing the radial distribution function curves, RDF(r), calculated with X-ray diffraction data. The coordination number of all densified glasses is about 4 and shows almost no pressure variation. The SiO2 glass has shown density increase of 11% at a shock compression of 26.3 GPa. This density evolution could not be explained by the coordination change. The reduction of the average Si–O–Si angle (144° at 0 GPa to 136° at 26.3 GPa) obtained from RDF(r) data may account for this density increase. This Si–O–Si angle change may be caused by shrinkage of the network structure and the increase of small rings of SiO4 tetrahedra. For higher shock pressure, a decrease in the Si–O–Si angle to 140° was observed. This is consistent with the decrease in density at 32.0 and 43.2 GPa. This decrease in the Si–O–Si angle and density could be attributed to an annealing effect due to high after-shock residual temperature. This pressure dependence of average Si–O–Si angles in shock-densified SiO2 glass agrees with the results of our previous Raman spectroscopic study. On the other hand, the pressure variation for the first sharp diffraction peak (FSDP) was analyzed to estimate the evolution of intermediate range structures. It is suggested that the mean d value (d m ) obtained from the position of FSDP strongly depends on the shock and residual temperature, as well as shock pressure. Received: 29 June 2001 / Accepted: 14 November 2001  相似文献   

13.
Summary Integration of new mineral chemical, geochronological and structural data from the Texel Complex yielded information on (re)crystallization and deformation processes in metapelites, eclogites and tonalitic orthogneisses during eclogite facies metamorphism. Maximum PT conditions reached 1.2 to 1.4 GPa and 540–620 °C in the Upper Cretaceous. In tonalitic orthogneisses and metapelites, substantial garnet growth took place prior to eclogite facies metamorphism and Sm–Nd data indicate the presence of pre-Cretaceous mineral relics. In contrast, complex garnet-growth and -resorption processes are inferred for eclogites, which produced characteristic atoll microstructures and occurred close to the pressure peak of a single, coherent high pressure event. Garnet Sm–Nd data indicate eclogite facies crystallization at 85 ± 5 Ma. While eclogites retained information on the maximum burial stage, matrix phases in metapelites and orthogneisses were intensely recrystallized during the amphibolite facies metamorphic decompression. All the meso- and macro-scale deformation structures formed during the high pressure event and subsequent exhumation. The major mylonitic foliation is represented by the high pressure phases but was refolded during amphibolite facies exhumation. A biotite-whole-rock Rb–Sr age of 70–80 Ma indicates that cooling below about 300 °C occurred in the Upper Cretaceous. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

14.
The low-temperature isobaric heat capacities (C p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System. The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure consistent with the 660 km discontinuity, considering the error of the thermodynamic data.  相似文献   

15.
 The lattice constants of paragonite-2M1, NaAl2(AlSi3)O10(OH)2, were determined to 800 °C by the single-crystal diffraction method. Mean thermal expansion coefficients, in the range 25–600 °C, were: αa = 1.51(8) × 10−5, αb = 1.94(6) × 10−5, αc = 2.15(7) ×  10−5 °C−1, and αV = 5.9(2) × 10−5 °C−1. At T higher than 600 °C, cell parameters showed a change in expansion rate due to a dehydroxylation process. The structural refinements of natural paragonite, carried out at 25, 210, 450 and 600 °C, before dehydroxylation, showed that the larger thermal expansion along the c parameter was mainly due to interlayer thickness dilatation. In the 25–600 °C range, Si,Al tetrahedra remained quite unchanged, whereas the other polyhedra expanded linearly with expansion rate proportional to their volume. The polyhedron around the interlayer cation Na became more regular with temperature. Tetrahedral rotation angle α changed from 16.2 to 12.9°. The structure of the new phase, nominally NaAl2 (AlSi3)O11, obtained as a consequence of dehydroxylation, had a cell volume 4.2% larger than that of paragonite. It was refined at room temperature and its expansion coefficients determined in the range 25–800 °C. The most significant structural difference from paragonite was the presence of Al in fivefold coordination, according to a distorted trigonal bipyramid. Results confirm the structural effects of the dehydration mechanism of micas and dioctahedral 2:1 layer silicates. By combining thermal expansion and compressibility data, the following approximate equation of state in the PTV space was obtained for paragonite: V/V 0 = 1 + 5.9(2) × 10−5 T(°C) − 0.00153(4) P(kbar). Received: 12 July 1999 / Revised, accepted: 7 December 1999  相似文献   

16.
 Using the high-pressure differential thermal analysis (HP-DTA) system in a cubic multianvil high-pressure apparatus, we measured the melting points of portlandite, Ca(OH)2, up to 6 GPa and 1000 °C. We detected endothermic behavior at the temperature and pressure conditions of 800 °C and 2.5 GPa, 769 °C and 3.5 GPa, 752 °C and 4.0 GPa, 686 °C and 5.0 GPa, and 596 °C and 6.0 GPa, respectively, due to melting of portlandite. By in situ X-ray studies under pressure, the melting of portlandite was observed at 730 °C and 4.32 GPa and at 640 °C and 5.81 GPa, respectively. Results of both HP-DTA and X-ray studies were consistent within experimental error. The melting is congruent and has a negative Clapeyron slope, indicating that liquid Ca(OH)2 has higher densities than crystalline portlandite in this pressure range. Received: 19 June 1999 / Revised, accepted: 11 September 1999  相似文献   

17.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

18.
 The second-order elastic constants of CaF2 (fluorite) have been determined by Brillouin scattering to 9.3 GPa at 300 K. Acoustic velocities have been measured in the (111) plane and inverted to simultaneously obtain the elastic constants and the orientation of the crystal. A notable feature of the present inversion is that only the density at ambient condition was used in the inversion. We obtain high-pressure densities directly from Brillouin data by conversion to isothermal conditions and iterative integration of the compression curve. The pressure derivative of the isentropic bulk modulus and of the shear modulus determined in this study are 4.78 ± 0.13 and 1.08 ± 0.07, which differ from previous low-pressure ultrasonic elasticity measurements. The pressure derivative of the isothermal bulk modulus is 4.83 ± 0.13, 8% lower than the value from static compression, and its uncertainty is lower by a factor of 3. The elastic constants of fluorite increase almost linearly with pressure over the whole investigated pressure range. However, at P ≥ 9 GPa, C 11 and C 12 show a subtle structure in their pressure dependence while C 44 does not. The behavior of the elastic constants of fluorite in the 9–9.3 GPa pressure range is probably affected by the onset of a high-pressure structural transition to a lower symmetry phase (α-PbCl2 type). A single-crystal Raman scattering experiment performed in parallel to the Brillouin measurements shows the appearance of new features at 8.7 GPa. The new features are continuously observed to 49.2 GPa, confirming that the orthorhombic high-pressure phase is stable along the whole investigated pressure range, in agreement with a previous X-ray diffraction study of CaF2 to 45 GPa. The high-pressure elasticity data in combination with room-pressure values from previous studies allowed us to determine an independent room-temperature compression curve of fluorite. The new compression curve yields a maximum discrepancy of 0.05 GPa at 9.5 GPa with respect to that derived from static compression by Angel (1993). This comparison suggests that the accuracy of the fluorite pressure scale is better than 1% over the 0–9 GPa pressure range. Received: 10 July 2001 / Accepted: 7 March 2002  相似文献   

19.
Experiments have been conducted in the P-T range 2.5–15 GPa and 850–1,500°C using bulk compositions in the systems SiO2–TiO2–Al2O3–Fe2O3–FeO–MnO–MgO–CaO–Na2O–K2O–P2O5 and SiO2–TiO2–Al2O3–MgO–CaO–Na2O to investigate the Ca-Eskola (CaEs Ca0.50.5AlSi2O6) content of clinopyroxene in eclogitic assemblages containing garnet + clinopyroxene + SiO2 ± TiO2 ± kyanite as a function of P, T, and bulk composition. The results show that CaEsss in clinopyroxene increases with increasing T and is strongly bulk composition dependent whereby high CaEs-contents are favoured by bulk compositions with high normative anorthite and low diopside contents. In this study, a maximum of 18 mol% CaEsss was found at 6 GPa and 1,350°C in a kyanite-eclogite assemblage garnet + clinopyroxene + kyanite + rutile + coesite. By comparison, no significant increase in CaEsss with increasing P could be observed. If the formation of oriented SiO2-rods frequently observed in eclogititc clinopyroxenes is due to the retrogressive breakdown of a CaEs-component then these textures are a cooling rather than a decompression phenomenon and are most likely to be found in kyanite-bearing eclogites cooled from temperatures ≥750°C. The presence of clinopyroxene with approx. 4 mol% CaEsss in an experiment conducted at 2.5 GPa/850°C confirms earlier suggestions based on field data that vacancy-rich clinopyroxenes are not necessarily restricted to ultrahigh pressure metamorphic conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary Fine-grained homogeneous powder samples of thirteen trioctahedral micas, mostly intermediate members of the phlogopite – annite solid solution series, and samples close to the phlogopite, fluor-phlogopite and tetra-ferriphlogopite end members have been examined at the potassium K-edge by X-ray absorption fine structure spectroscopy. The interlayer K+ cation is in a coordination that is certainly lower than 12, in contrast to what is expected from the ideal hexagonal symmetry model of the mica structure, and approaches – but it does not reach – coordination 6, as it should be when the effective ligands are the three nearest outer bridging oxygens of two facing upper and lower tetrahedral sheets. The observed range of coordinations implies that only some of the three inner bridging oxygen atoms in each sheet are involved, thus leading to 6±(1 … 6) effective configurations depending on the composition of the individual mica terms. The effective coordination number was found to vary continuously with composition from 11 to 7 and to be related to the tetrahedral rotation angle (α) according to two different linear relationships for the phlogopite – annite series (Fe2+Mg−1 exchange vector, involving the octahedral sheet only) and the phlogopite – tetra-ferriphlogopite series (Fe3+Al−1 vector, involving the tetrahedral sheet), respectively. Substitutions affecting either the A cation in the interlayer or the X anion in the octahedral sheet also affect the observed trends. In particular, the latter substitution effect is best seen in two near end member phlogopites, where the fluorine to hydroxyl substitution (F (OH)−1 exchange vector), which greatly changes the α tetrahedral rotation angle is, reflected in the experimental K XANES spectra by modifying not only the energy but also the intensities of most multiple scattering features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号