首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
PHREEQC在地下水溶质反应-运移模拟中的应用   总被引:7,自引:2,他引:7  
由于地下水污染的加剧,对地下水中污染物运移规律的研究日益受到重视。地下水中的溶质在运移过程中伴随着溶质组分间的化学反应,因此需要建立地下水溶质运移与化学反应的耦合模型。PHREEQC是近年来发展起来的描述局部平衡反应、动态生物化学反应的水文地球化学模拟软件。本文利用该模拟软件对一维地下水流动过程中溶质离子交换反应和动态氧化还原反应进行了模拟。结果表明,PHREEQC能够成功地进行溶质运移情况下复杂水化学反应模拟,但对于复杂地下水流和溶质运动的情况,有必要耦合其它的地下水流动和溶质运移软件来共同完成。  相似文献   

2.
利用室内一维饱和垂直土柱对保守性溶质运移和反应性溶质运移分别进行了试验,并用水文地球化学模拟软件PHREEQC模拟了保守性溶质Cl-的运移以及K+、Ca2+、Na+、Mg2+4种主要阳离子的反应运移过程,分析了土壤中发生的离子交换吸附和盐分运移过程,进一步模拟分析了不同入流溶液种类、次序以及有无置换反应情况下出流溶液的差别。结果表明:这些条件的不同均会对出流溶液的种类和浓度产生明显影响,表明水文地球化学反应对地下水中污染物的迁移会产生很大影响,在相关领域的研究中不宜忽略。  相似文献   

3.
反应性溶质在不同质地饱和土柱中运移的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
盐渍土壤中的物理化学作用对溶质运移具有重要影响.吸附和离子交换作用是土壤中常见的反应.利用室内土柱出流实验对这两种作用下的单组分和多组分溶质运移进行了探讨,用CXTFIT软件模拟了只考虑对流-弥散的常规溶质运移;用水文地球化学模拟软件PHREEQC进行了耦合吸附和离子交换反应的模拟.结果表明,土壤质地对单组分溶质的运移具有重要影响,而在多组分溶质运移中,组分之间的相互作用对溶质运移具有更为重要的影响,并且耦合物理化学作用的模拟精度更高.  相似文献   

4.
郝进庭 《铀矿地质》2013,(1):24-30,46
文章采用PHREEQC模式程序,对研究区地下水的水文地球化学环境进行了模拟,确定水中铀的存在形式、水中沥青铀矿饱和指数(SI)和反应条件指数(RCI)等水文地球化学参数;分析了地层中铀所处状态与水中Eh值、pH值、铀浓度的关系;证明了水的Eh值是控制铀成矿作用的最主要因素;对砂岩型铀矿床的形成及其定位的水文地球化学条件进行了较系统研究和探讨;对砂岩型铀矿成矿水文地球化学机理进行了论证和计算;阐述了铀活化迁移、沉淀富集的本质规律;也为水文地球化学方法研究砂岩型铀矿的成矿预测和矿床定位提供了重要依据。  相似文献   

5.
首先简述了地球化学模式程序、与铀成矿有关的水文地球化学参数及区域地质、水文地球化学概况,并研究了区内水文地球化学环境。在此基础上,依据区内水质分析资料,运用地球化学模式程序(PHREEQC)计算了下白垩统地下水中沥青铀矿饱和指数(SI)、Eh反应条件边界值(Ehb,U)及Eh反应条件指数(RCIEh)等。认为该区局部地段在下白垩统地下水的深部存在Ehw﹤Ehb,U,RCIEh<0,SI>0的条件,即地下水处于过渡环境中,地下水中铀处于沉淀析出的饱和或过饱和状态,与岩石地球化学环境吻合性较好。因而在区内具有铀矿化的可能性,已被区内发现的工业铀矿化得到了证实。  相似文献   

6.
地下多组分反应溶质运移数值模拟(RTM)是解释地球系统中的耦合过程和不同时空尺度对其影响的重要工具。RTM是研究地球科学基础理论、地质资源和环境等复杂地球化学过程的一个新方法,可用于如废物处置安全性评估、地下水污染研究、二氧化碳地质储存、金属矿床的地浸开采等的研究中。笔者首先回顾了反应溶质溶质运移模拟的发展历史,然后总结了反应溶质运移模拟的发展现状,再从耦合过程、空间尺度、裂隙和非均质介质处理角度说明了反应溶质运移模拟所面临的挑战。结合地下水质的演化、生物降解、CO2地质储存等具体实例讨论了反应溶质运移模拟的广泛应用前景,探讨了反应溶质运移模拟的未来发展方向。  相似文献   

7.
酸法地浸采铀对铀矿层的地下水环境有极大的破坏作用,当开采结束后将形成酸性地下水污染羽。为恢复含矿含水层的水质,必须采取有效的污染治理措施。自然净化是一种较经济的方法,但是必须对其有效性进行评价。本研究以某退役地浸铀矿采区含矿含水层为研究对象,采用反应溶质运移模拟方法来研究酸性污染羽在含水层中的自然净化作用。研究中使用PHT3D模型模拟污染羽的运移,模拟反应组分共12种、沉淀溶解矿物共6种,模拟时长为5a。模拟结果表明:酸性污染物进入地下水后,形成了由方解石、Al(OH)3(a)和 Fe(OH)3(a)反应所控制的pH缓冲区;随着酸性污染羽的向下游高pH值地下水区域移动,方解石溶解与石膏沉淀反应可使SO42-浓度产生明显下降,其他主要金属离子污染物也有明显的自净作用。  相似文献   

8.
水成铀矿床的形成受控于水文地球化学环境的变化,水-岩体系的pH、Eh值和水化学成分的改变是铀富集成矿的关键因素。笔者根据地质、水文及水化学分析资料,应用PHREEQC软件对伊犁盆地蒙其古尔铀矿床三工河组地下水系统中发生的水文地球化学过程进行模拟,以期确定:1)层间水在径流过程中与含水层发生的化学反应;2)水-岩化学反应发生的条件及进行的程度;3)体系中铀的水文地球化学行为及其成矿的有利条件。  相似文献   

9.
《地下水》2017,(1)
超铀核素是放射性废物地质处置中重点关注核素,其在地下水中的化学形态是影响其迁移的重要因素,PHREEQC是由美国地质调查局开发的免费水文地球化学模拟软件,它是在PHREEQE的基础上发展而来的,与传统的水化学反应模型相比,目前的PHREEQC最新版不仅可以描述局部平衡反应,还具有模拟表面吸附、一维扩散、反应动力学计算、固体溶解、反应途径计算等功能,是目前比较完善的地化模式程序之一,在国内外广泛使用。采用PHREEQC程序分析超铀元素Np、Pu、Am在某处置工程地下水中的存在形态,并对影响因素进行分析。结果表明,地下水水化学成分是影响核素存在形态的重要因素,热力学数据库的差异和准确性会影响计算结果,p H对核素的存在形式和存在价态有着很重要的影响,在地下水的p H变化范围内,Np主要以Np O2+形式存在,Pu以Pu(OH)_4形式存在,Am主要以AmCO_3~+的形态存在。  相似文献   

10.
应用水文地球化学模拟(PHREEQC软件)对咸阳城区地下热水进行了水文地球化学演化和路径模拟.模拟路径分别为西、西北两个补给方向.模拟结果表明,,地下水流向发生了一系列的水-岩反应,,线R5→SP2,SP2水化学类型由Na-HCO2-Cl转化为Na-Cl型,而西北线R6→SP2水化学类型由Na-Ca-HCO3 -el转化为Na-Cl型,在水流路径上SiO2(玉髓)、方解石、白云石和高岭石发生了沉淀,而岩盐、石膏、天青石、钠长石、云母和萤石发生了溶解作用.对研究区地下热水地球化学反应路径模拟,描述了研究区地下热水补给到排泄的演化特征,表明水-岩作用模拟对于揭示研究区地下水化学演化环境具有重要的指示意义.  相似文献   

11.
One of the most important observations that can be obtained from the study of an aquifer system dominated by mixing is the contribution of each end-member water to the chemical composition of every water parcel in the aquifer. Once the first-order effect of mixing has been taken into account via the mixing proportions, water–rock interaction can be used to explain the remaining variability. There are many sources of uncertainty that can prevent the accurate calculation of the mixing proportions of a mixing-dominated system, but the type and intensity of the chemical reactions that have taken place as a consequence of mixing is one of the most critical. Here the uncertainty in the computed mixing proportions of samples from a “synthetic” aquifer system derived from the actuation of different chemical reactions are assessed (always remembering that the chemical reactions are a second-order effect). These uncertainties are explored using two different geochemical codes in order to infer the limits of both methodological approaches: PHREEQC, as an example of a standard geochemical code; and M3, as an example of a Principal Component-based geochemical code. Several synthetic water samples are created with the direct approach of PHREEQC, both by pure mixing and including different types of chemical reactions. Together with the chemical information of the end-member waters, these samples are then fed into PHREEQC (inverse modelling) and M3 and the mixing proportions and mineral mass transfers are computed. PHREEQC calculations give a reasonable estimate of the real mixing proportions and the chemistry of the groundwaters. However, similar mixing proportions and mass transfers can be obtained using different sets of reactions, indicating a source of uncertainty that should be overcome with additional chemical information. For M3, where synthetic samples have been included in a real data set of groundwater samples from the Scandinavian Shield, mixing proportions are only mildly affected either by the number of compositional variables or the number of samples used for the Principal Component Analysis (PCA). However, the robustness of the output is quite sensitive to whether only conservative compositional variables are used or both conservative and non-conservative compositional variables. Mass balance calculations in M3 are much more sensitive to non-conservative compositional variables and the recommendation here is not to use non-conservative variables with PCA-based codes if any information about reactions is to be obtained.  相似文献   

12.
Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow.  相似文献   

13.
In this work, we present results of the hydrogeochemical and isotopic studies on groundwater samples from the El Ma El Abiod Sandstone aquifer, in Tébessa, Algeria. Chemical and environmental isotope data are presented and discussed in order to identify the geochemical processes and their relation with groundwater quality as well as to get an insight into the hydrochemical evaluation, in space and time, of groundwater and of the origin of dissolved species. A combined hydrogeologic and isotopic investigation have been carried out using chemical and isotopic data to deduce a hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. All of the investigated groundwaters are categorized into two chemical types: low mineralized water type and relatively high mineralized water type. Interpretation of chemical data, based on thermodynamic calculations and geochemical reaction models of selected water groups constructed using PHREEQC, suggest that the chemical evolution of groundwater is primarily controlled by water–rock interactions, involving (1) acidic weathering of aluminosilicates, (2) dissolution of secondary carbonate minerals, and (3) cation exchange of Na+ for Ca2+. However, the original composition of groundwater may have been modified by further secondary processes such as mixing of chemically different water masses. The combined use of SI and mass-balance modeling has shown to be a useful approach in interpreting groundwater hydrochemistry in an area where large uncertainties exist in the understanding of the groundwater flow system. Interpretation of 18O and 2H, suggest that the recharge of the investigated groundwaters may result from different mechanisms.  相似文献   

14.
The 234U/238U alpha activity ratio (AR) was determined in 47 samples of variably uraniferous groundwater from the vicinity of a uranium mill near Cañon City, Colorado. The results illustrate that uranium isotopes can be used to determine the distribution of uranium contamination in groundwater and to indicate processes such as mixing and chemical precipitation that affect uranium concentrations. Highly to moderately contaminated groundwater samples collected from the mill site and land immediately downgradient from the mill site contain more than 100?μg/l of dissolved uranium and typically have AR values in the narrow range of 1.0–1.06. Other samples from the shallow alluvial aquifer farther downgradient from the mill contain 10–100?μg/l uranium and plot along a broad trend of increasing AR (1.06–1.46) with decreasing uranium concentration. The results are consistent with mixing of liquid mill waste (AR≈1.0) with alluvial groundwater of small, but variable, uranium concentrations and AR of 1.3–1.5. In the alluvial aquifer, the spatial distribution of wells with AR values less than 1.3 is consistent with previous estimates of the probable distribution of contamination, based on water chemistry and hydrology. Wells more distant from the area of probable contamination have AR values that are consistently greater than 1.3 and are indicative of little or no contamination. The methodology of this study can be extended usefully to similar sites of uranium mining, milling, or processing provided that local geohydrologic settings promote uranium mobility and that introduced uranium contamination is isotopically distinct from that of local groundwater.  相似文献   

15.
The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.  相似文献   

16.
 Analyses of 126 samples collected from 18 dug wells in the shallow basaltic aquifer over a period of 7 months have revealed spatial as well as temporal changes in the chemical properties of groundwater. While the temporal changes have been attributed to dilution and concentration phenomena governed by climatic factors, the spatial variations in the geochemical characteristics of groundwater appeared to be related to pollution due to effluents from the Mula Sugar Factory. The cause of groundwater pollution is the effluent carried by a stream flowing through the area. Fluctuations in the groundwater table, influent water quality character of the stream, less capacity to accommodate large volume of effluent and occurrence of zero base flow (under natural conditions) in the stream are the factors favoring infiltration of constituents of waste water into the underlying weathered basaltic aquifer. Pollutants have entered into the shallow aquifer by downward percolation through the zone of aeration to form a recharge mound at the water table and, further, lateral movement below the water table. The plume of polluted groundwater has a lateral extent of a few meters in the upstream area and more than 400 m on either side of the stream in the downstream part. The zone of polluted groundwater has an areal extent of more than 3.5 km2. Groundwater is the only source available for drinking and agricultural purposes. It is recommended that the base of the lagoons and the stream used for release of plant effluent should be waterproofed for the protection of groundwater in the Sonai area. Received: 30 April 1997 · Accepted: 23 September 1997  相似文献   

17.
Groundwater in Yinchuan City has been heavily over-exploited, thus leading to the formation of depression cones in confined and phreatic groundwater environments. The depression cones have an important influence on the hydrodynamic and hydrochemical fields of groundwaters. The evolution of depression cones was analyzed on the basis of the monitoring data on groundwater level accumulated in the past 14 years. The ratio of rCl-/rCa2 showed that phreatic water circulation was intensified, and confined groundwater was affected by external factors. Mass balance of Cl- showed confined water mixed with about 11% phreatic water. It is shown that the alternative function of confined water was affected by external factors. At last, the evolution of groundwater hydrochemical field on the basis of groundwater chemical composition showed that phreatic water quality has been improved whereas confined water quality has been deteriorated. Saturation indices of minerals with respect to phreatic and confined waters were calculated by using PHREEQC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号