首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》1998,11(4):171-181
During the past century, the autochthonous and allochthonous origin of clay with flints from underlying chalk rocks has been the subject of many discussions. In order to have a better understanding of the origin of this unit, a weathering balance between chalk and clay with flints was made. This balance was estimated by an accurate knowledge of mother chalk ages and by comparison of grain size distribution and geochemistry between chalk and clay with flints. These comparisons are based on the quantities of flints in chalk and in clay with flints, because flints are autochthonous and their weathering is calculated. Results provide several new elements on the Cretaceous evolution of the Paris-London Basin: chalk of Maastrichtian age existed in the Paris Basin, and we now have good estimations of the quantities of chalk that disappeared through weathering. Results further show that the stratigraphic succession of chalk is maintained in the clay with flints. Additionally, flints (autochthonous elements of clay with flints) are only slightly weathered. Clay with flints matrix is composed of a significant allochthonous fraction in the first 10 m, which diminishes with depth and disappears below a depth of 20 m. Pure clay with flints issued from chalk decarbonatation only exists at a depth greater than 20 m.  相似文献   

2.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   

3.
Although it is a pelagic sediment, fine-grained calcareous ooze may be mobilized prior to general lithification and redeposited as allochthonous units. Numerous occurrences of allochthonous chalk have been reported in recent years, having been recognized by large-scale bedding features seen in outcrop. Smaller-scale internal features, such as contorted laminae, and larger features, such as smeared burrows and imbricated flint nodules, attest to a significant amount of soft-sediment deformation and synsedimentary slumping in European chalk sections of Late Cretaceous age. Truly autochthonous chalks contain complex, tiered ichnofabrics and in some cases exhibit a diagenetic nodular fabric that is undisturbed by transport. In some situations, such as stagnant water conditions, autochthonous chalks may exhibit primary lamination, although this is very uncommon in European chalk sequences. Different types of redepositional processes produce an array of varied allochthonous fabrics. Glide and slump units, for example, contain internal deformational features produced during sliding. Ooze flow causes plastic deformation of chalk units, internally as well as externally. Resuspension and fluid flow of chalk sediment produces a deposit having a totally new fabric, such as a conglomerate composed of detrital chalk clasts. In this paper, typical macroscopic, sedimentary fabric types are illustrated, and the means of identifying them are discussed in terms of bioturbation features, in situ diagenetic nodules versus detrital clasts, physical deformation structures and development of flints.  相似文献   

4.
Diagenetic history of a North Sea chalk   总被引:1,自引:0,他引:1  
A study of the petrofabrics of Danian and uppermost Maastrichtian chalk from the North Sea was undertaken to investigate its particulate components and diagenetic history. Danian and Maastrichtian chalks are intensely mottled and burrowed globi-gerinid lime mudstones. The Danian chalk matrix is composed of coccolith and thoracosphaerid debris, whereas the Maastrichtian chalk matrix contains mainly coccoliths. The lower part of the Danian is often argillaceous. Three modes of lithification are evident—a spot-welding of adjacent grains (important in Danian chalk), selective overgrowths (prolific in Maastrichtian chalk), and a sparry calcite pore filling associated with Maastrichtian stylolitization. Not only does the scant cementation of chalk stem from an inadequate source of metastable calcium carbonate in the form of aragonite, but also indirectly in that extensive pressure-solution is impeded by certain pore fluid compositions. Pressure-solution can occur only at point contacts where a threshold linear pressure is exceeded and so allows an increase in calcite solubility. It is proposed that through the formation of spot-welds an initial rigid intergranular framework is constructed in chalk relatively early during diagenesis. Subsequent increases in overburden eventually permit extensive stylolitization and the late diagenetic reprecipitation of a sparry calcite pore filling adjacent to stylolites. The time and genesis of selective overgrowths is less clear.  相似文献   

5.
 The southern Voltaian Sedimentary Basin underlies an area of about 5000 km2 in east-central Ghana. Groundwater in the basin occurs in fractures in highly consolidated siliciclastic aquifers overlain by a thin unsaturated zone. Aquifer parameters were evaluated from available aquifer-test data on 28 shallow wells in the basin. Hydraulic-conductivity values range from 0.04–3.6 m/d and are about two orders of magnitude greater than the hydraulic conductivity calculated using Darcy's Law and the average groundwater velocity estimated from carbon-14 dating. Linear-regression analysis of the transmissivity and specific-capacity data allowed the establishment of an empirical relationship between log transmissivity and log specific capacity for the underlying aquifers. Groundwater chemistry in the basin is controlled by the weathering of albitic plagioclase feldspar. The weathering rates of various minerals were estimated using 14C-derived average velocity in the basin. The weathering rate of albite was calculated to be 2.16 μmol L–1 yr–1 with the resulting formation of 3.3 μmol L–1 yr–1 of kaolinite and 0.047 μmol L–1 yr–1 of calcite. The low porosity and permeability of the aquifers in the basin are attributed to the precipitation of secondary minerals on fracture surfaces and interlayer pore spaces. Received, September 1997 Revised, July 1998, August 1998 Accepted, August 1998  相似文献   

6.
Metre-scale lithologic cycles, visible in core and on logs from Maastrichtian chalks of the Dan Field, were examined to determine their mechanisms of deposition and relation to hydrocarbon production. The lower parts of cycles consist of porous, cream-coloured, largely non-stylolitic, commonly laminated chalk with limited bioturbation (mainly escape burrows). Cycles are capped by thinner intervals of white to grey, hard, stylolitic chalk with concentrations of bioclastic material, intense burrowing and few preserved primary sedimentary structures. The cycle caps contain nearly twice as much Mg as compared to the more porous parts of cycles and also have slightly larger δ18O values (?4·1‰ for the caps; ?4·4‰ for porous zones). There is a significant reduction of average cycle thickness, as well as total thickness of the Maastrichtian chalk section, from SW to NE across the Dan Field. The cycle thinning largely results from a reduced thickness of porous chalks from the lower parts of cycles and thus is reflected in lower average porosity and permeability on the NE side of the field. These data indicate that episodic winnowing removed fine-grained constituents from highstanding northeastern areas. Porous cycle bases were deposited at relatively high rates that precluded complete bioturbation; preserved laminae, coupled with escape burrows, reflect episodic sediment influx in areas that flank the seafloor highs. Cycle tops apparently accumulated more slowly (throughout the region, but especially on seafloor highs), perhaps because of reduced productivity of planktic organisms. Slower sedimentation allowed more complete bioturbation and destruction of sedimentary structures, and also led to incipient high-magnesium calcite seafloor cementation (sufficient to yield firmer sediment and enhanced burrow preservation, but not to form true hardgrounds). Thus, the elevated magnesium contents and reduced porosity of the cycle caps reflect very early diagenetic processes that were only partially modified by burial diagenesis. Rates of chalk deposition, as inferred from physical and geochemical evidence, appear to be a significant control on reservoir characteristics in North Sea chalks. The highest average porosities and permeabilities are found in areas with the highest sediment accumulation rates where seafloor diagenesis is minimized. Topographic depressions at the time of sedimentation can thus be expected to have the best production characteristics, and synsedimentary topographic highs should have the thinnest sections and the poorest petrophysical properties.  相似文献   

7.
Supergene Mn-oxide deposits are widely distributed in Guangxi, Guangdong, Yunnan, and Hunan Provinces, South China, accounting for 18% of the total Mn reserves in the country. Direct dating of supergene Mn enrichment, however, is lacking. In this paper, we present high-resolution 40Ar/39Ar ages of Mn oxides from the Xinrong Mn deposit, western Guangdong, to place numerical constraints on the timing and duration of supergene Mn enrichment. A total of ten cryptomelane samples, spanning a vertical extent of 67 m, were dated using the 40Ar/39Ar laser incremental heating technique, with seven samples yielding well-defined plateau or pseudo-plateau ages ranging from 23.48 ± 0.91 to 2.06 ± 0.05 Ma (2σ). One sample yields a staircase spectrum that does not reach a plateau; the spectrum, however, indicates the presence of two or more generations of Mn oxides in the sample, whose ages are best estimated at 22.34 ± 0.31 and 10.2 ± 0.86 Ma, respectively. The remaining two samples gave meaningless or uninterpretable results due to significant 39Ar recoil and contamination by old phases. The 40Ar/39Ar data thus reveal a protracted history of weathering and supergene Mn enrichment that started at least in the end of the Oligocene or beginning of Miocene and extending into the latest Pliocene. Staircase-apparent age spectra, resulting from banded or botryoidal samples, yield an average growth rate of Mn oxides at 0.6–0.7 × 10−3 mm kyr−1. The values indicate that a 1-mm grain of Mn oxides may host minerals precipitated during a time span of ca. 1.5 m.y., and accumulation of Mn oxides to form economic deposits under weathering environments may take millions of years. The distribution of weathering ages shows that the oldest Mn oxides occur on the top of the profile, whereas the youngest minerals are found at the bottom, suggesting downward propagation of weathering fronts. However, two samples located at the intermediate depths of the profile yield ages comparable with those occurring at the highest elevations. Such a complexity of age distribution is interpreted in terms of preferential penetration of Mn-rich weathering solutions along more permeable fault zones, or as a result of multi stages of dissolution and re-precipitation of Mn oxides. A synthesis of geochronological and geological data suggests that formation of the Xinrong deposit was a consequence of a combination of favorable lithological, climatic, and structural conditions. Because the climatic and structural conditions are similar among the provinces of South China during the Cenozoic, the geochronological results obtained at Xinrong may also have implications for the timing of supergene Mn enrichment throughout South China.  相似文献   

8.
Two deep scientific boreholes, named Poigny 701 and Sainte-Colombe 702, located in the Paris Basin near Provins (Seine-et-Marne, France), recovered a complete Upper Cretaceous chalk succession. A correlation between the boreholes lithostratigraphy, reflexion seismic profiles and diagenetic patterns shows that major velocity variations measured in the seismic reflection profiles correspond to dolomitized chalk intervals. Dolomitisations occurred during early and burial diagenesis. The understanding of these complex diagenetic events has an important economic consequence on the static correction of the chalk formation in the Paris Basin. Optimisation of petroleum prospecting below chalk cover is thus possible. The chalk series of the 701 and 702 boreholes range from the Cenomanian to the upper Campanian. In this succession, micrite has a primarily biogenic origin; it consists of pelagic organisms, indicative of warm seawater with values around 25°C. Several hiatuses occur in the 701 borehole. These hiatuses indicate the existence of particular hydrodynamic conditions. Deep-water channels were locally recognised in the Paris Basin as in Normandy and Picardy. In the 702 borehole, massive dolomitisation affected the upper meters of sediment below the sea floor. This early phase of massive dolomitisation was induced by slow circulation of a magnesium-rich seawater mass, along the seawater/sediment interface. Thus, this area was a zone of intense marine circulation between the North-West infralittoral and the South-West bathyal domains, across the London-Paris Basin. Magnesium-rich seawater had as origin the recrystallisation of the biogenic peri-plateform carbonates. During both dolomitisation and dissolution of the calcite matrix of the massive dolomite, the calcite had cemented chalk around the massive dolomite body. After deposition, the chalk series was progressively compacted and lithified by burial calcite cement. During the late Campanian-Maastrichtian, the burial compaction of the chalk and thermal gradient reached their maximum, as compressive stresses from the Pyrenean orogenesis affected the Paris Basin. At this time, compaction of the massive dolomite induced the expulsion of magnesian-rich fluids into the underlying already compacted chalk series. In 702 borehole, a diffuse dolomitisation then affected strongly underlying the chalk series. In 701 borehole, this diffuse dolomitisation affected slightly the lower half of the chalk series. Laterally, dolomitisation decreases gradually and affected a only smaller thickness of the chalk series, disappearing laterally. During the progressive emergence of the Paris Basin, from the Paleogene to the Quaternary, the chalk series were partially invaded by continental fresh water. Thus partial dedolomitisation affected the massive dolomite, whereas total dedolomitisation affected only the upper first meters of it.Manuscrit reçu le 20 juin 2003 Révision acceptée le 9 septembre 2004  相似文献   

9.
Detailed facies analysis of a 350 m long core of upper Campanian–Maastrichtian chalk at Stevns Peninsula, eastern Denmark, shows that four mudstone and wackestone chalk facies account for close to 95% of the succession, and that bioturbated mudstone chalk alone accounts for nearly 55% of the sediment. Sedimentation took place in deep water, below the photic zone and storm‐wave base, and is characterized by decimetre to metre‐scale variations in facies and trace fossil assemblages indicating repeated shifts in depositional environment. Integration of facies with published data on sea‐surface temperature and accumulation rates suggests that sea‐surface temperature is the most important parameter in controlling stratification of the water column and thereby, indirectly, the observed variations in depositional facies. However, bioturbated mudstone chalk occurs in all stratigraphic levels independent of accumulation rates and sea temperatures and is interpreted to represent a very broad set of deep water environmental conditions with an ample supply of calcareous nannofossil debris and intense bioturbation. Longer term shifts in deposition are best expressed by distribution of clay, flint and bioturbated micro‐wackestone, bioturbated wackestone and laminated mudstone chalk facies, whereas the trace fossil assemblages appear less useful. The data set indicates overall shallowing over time with two distinctive events of clay influx to the basin during the late Campanian–earliest Maastrichtian and late Maastrichtian.  相似文献   

10.
Chalks originate as Cretaceous to Recent pelagic or hemipelagic calcareous ooze, which indurate via burial diagenesis to chalk and limestone. Because they accumulate in pelagic settings with high environmental continuity, chalks may form thick formations and even groups. For this reason, and because chalks have a simple mineralogy (low magnesium calcite, silica and clays), they are ideal for the study of diagenetic processes including the depth-related decrease of porosity. It is the aim of this study to illustrate how the evaluation of in situ elastic strain can help in understanding these processes including the interplay between stress-controlled diagenetic processes and processes furthered by thermal energy. Petrophysical core and well data can be used for analyses of how porosity reduction via pore collapse and pressure dissolution is related to in situ elastic strain. The data in question are: depth, density of overburden, pore pressure, ultrasonic P-wave velocity and dry density/porosity. The analysis reveals that the transition from ooze to chalk is associated with high elastic strain and consequent pressure dissolution at calcite–particle contacts causing contact cementation. The transition from chalk to limestone is also associated with high elastic strain, especially at clay–calcite interphases causing development of stylolites via pressure dissolution, and consequent pore-filling cementation. Following each transformation the elastic strain drops rapidly. The observation of this diagenesis-related pattern in elastic strain of the sedimentary rock is novel and should not only be helpful in understanding the porosity development in sedimentary basins, but also add basic scientific insight.  相似文献   

11.
 The central Ganga Basin is one of the major groundwater reservoirs in India. The Kali-Ganga sub-basin is a micro watershed of the central Ganga Basin, containing a number of productive aquifers. A detailed hydrogeological investigation was carried out, which reveals the occurrence of a single-tier aquifer system down to 163 m bgl (metres below ground level), but at places it is interleaved with clay layers; thus imparting it a two-to three-tier aquifer system. These aquifers are unconfined to confined in disposition. The transmissivity, storage coefficient and hydraulic conductivity are determined as 2178 m2/day, 1.12×10–5 and 120 m/day, respectively. The groundwater of the basin is fresh, of an alkali-bicarbonate type and is suitable for irrigation and domestic use. However, in certain areas, extensive agricultural activities, and domestic and industrial effluents have caused some deterioration of groundwater quality. This study contains data of where the concentration of Fe, Pb, Cd, Cr and Ni are higher than the permissible limits, which may be hazardous to public health. Received: 2 March 2000 · Accepted: 3 July 2000  相似文献   

12.
The normal grain growth behaviour of four different, but all nominally pure, calcite powders (99%+ analytic grade calcite, 99.7% chalk, 99.97% crushed Iceland Spar, 99.95%+ chelometric grade calcite) has been investigated as a function of temperature (550, 600, 650, 700 °C) and confining pressure (100, 190 MPa) under both “dry” and hydrostatic (P fluid = P total) conditions. The initial particle size of both the analytic grade and chelometric grade calcite was about 5 μm, and that of the chalk was about 3 μm, while the experiments on the Iceland Spar were conducted on powders of three different initial particle sizes (3.4, 7.5, 38.5 μm). On each material, at each pressure/temperature condition 6 to 15 experiments, equally spaced in log time from 15 minutes to 50 days, were conducted. Under dry conditions all four materials recrystallized to aggregates which contained less than 2% porosity and which had a grain size of between 4 and 20 μm (depending on the initial particle size). Subsequently the aggregates coarsened by normal grain growth, with the kinetics of the growth process being controlled by the rate at which the grain boundaries could drag the residual pores with them as they migrated. Under nominally identical conditions both the mechanism and rates of pore drag differed greatly for the different materials, implying that this process is highly sensitive to trace solute impurity concentrations. This sensitivity renders the task of providing a systematic account of dry calcite grain growth kinetics highly problematic. Under hydrostatic conditions all the powders followed the same normal grain growth kinetics in which the growth process was rate-controlled by diffusion through the pore fluid on the grain boundaries. An activation enthalpy of 162.6 kJ mol−1 and an activation volume of 34.35 cm3 mol−1 was obtained for this process. Received: 23 May 1996 / Accepted: 8 July 1997  相似文献   

13.
Santonian-Lower Campanian and Lower Maastrichtian phosphatic chalks in northern France, southern England and Belgium are Europe's largest sedimentary phosphatc deposits. The stratigraphy, sediment-ology, petrography, mineralogy and geochemistry of the lithofacies are reviewed and new data presented. Depositional and diagenetic models for phosphatic chalk deposits are developed using published experimental work and from observations of modern high- and low-productivity phosphogenic systems. It is concluded that phosphatic chalks were deposited in well-oxygenated, current-swept environments. Phosphatization required a delicate balance to be maintained between moderate organic carbon and carbonate sedimentation rates, reduced bulk sediment accumulation rate and an enhanced rate of bioturbation. Precipitation of carbonate-fluorapatite (francolite) accompanied the bacterially mediated decomposition of organic matter, occurring within centimetres of the sediment-seawater interface, and taking place preferentially within microbial bodies and coatings. In addition to the organically derived component, pore water phosphate levels were enhanced by phosphate absorbed on ferric oxyhydroxides which was liberated during iron reduction. Mineralization was probably a dominantly post-oxic process, but occurred in a thick sediment mixed layer in which marine organic matter was undergoing intense mixed aerobic and anaerobic microbial degradation. Phosphogenesis occurred predominantly on the NE margins of the Anglo-Paris Basin where shallower sea floors and suitable palaeoceanographic conditions prevailed. Phosphogenic episodes were limited by sea level fluctuations'which controlled the effectiveness of the erosional currents that formed and maintained the phosphatic basins and may have stimulated local productivity.  相似文献   

14.
Gras  Rutger  Geluk  Mark 《Geologie en Mijnbouw》1999,78(1):1-19
Analysis of the Upper Cretaceous stratigraphy of the Peel Block reveals the basin development of the block to have been influenced by both the inversion of the Roer Valley Graben and Central Netherlands Basin, and the overall Late Cretaceous transgression. Sediments of Santonian to Danian age were deposited on the block. These sediments are compared with the detailed lithostratigraphy of southern Limburg, where Late Cretaceous strata are exposed. Four successions can be recognised in southern Limburg. The two oldest successions, the Santonian Oploo Formation (new name, proposed in the present contribution) and the mainly Early Campanian Vaals Formation, are restricted to the central and northern parts of the block. These siliciclastic formations were deposited under the influence of inversion of the Roer Valley Graben and the Central Netherlands Basin, as well as under the influence of a rising sea level. Towards the north, sands of the Oploo Formation grade into marls and chalks of the Ommelanden Formation. The two youngest successions comprise the largely Late Campanian to Maastrichtian Gulpen and Maastricht Formations and the Danian Houthem Formation. These chalk formations were deposited under the influence of regional subsidence during a sea-level highstand. Subsequent to deposition of the Houthem Formation, a regional regression triggered a change from shallow-marine carbonate to paralic siliciclastic deposition.  相似文献   

15.
Many physico-chemical variables like rock-type, climate, topography and exposure age affect weathering environments. In the present study, an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering profiles in west coast of India, which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (<200 cm rainfall) are studied using X-ray diffraction technique. In the west coast, 1:1 clays (kaolinite) and Fe—Al oxides (gibbsite/goethite) are dominant clay minerals in the weathering profiles while 2:1 clay minerals are absent or found only in trace amounts. Weathering profiles in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite. Fe—Al oxides are either less or absent in clay fraction. The kaolinite—smectite interstratified mineral in Banasandra profiles are formed due to transformation of smectites to kaolinite, which is indicative of a humid paleoclimate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type. Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering. Mineral alteration reactions proceed through different pathways in water rich and water poor environments.  相似文献   

16.
In geologic materials, petroleum, and the environment, selenium occurs in various oxidation states (VI, IV, 0, -II), mineralized forms, and organo-Se complexes. Each of these forms is characterized by specific chemical and biochemical properties that control the element’s solubility, toxicity, and environmental behavior. The organic rich chalks and shales of the Upper Cretaceous Niobrara Formation and the Pierre Shale in South Dakota and Wyoming are bentoniferous stratigraphic intervals characterized by anomalously high concentrations of naturally occurring Se. Numerous environmental problems have been associated with Se derived from these geological units, including the development of seleniferous soils and vegetation that are toxic to livestock and the contamination of drinking water supplies by Se mobilized in groundwater.This study describes a sequential extraction protocol followed by speciation treatments and quantitative analysis by Hydride Generation-Atomic Absorption Spectroscopy. This protocol was utilized to investigate the geochemical forms and the oxidation states in which Se occurs in these geologic units. Organic Se and di-selenide minerals are the predominant forms of Se present in the chalks, shales, and bentonites, but distinctive variations in these forms were observed between different sample types. Chalks contain significantly greater proportions of Se in the form of di-selenide minerals (including Se associated with pyrite) than the shales where base-soluble, humic, organo-Se complexes are more prevalent. A comparison between unweathered samples collected from lithologic drill cores and weathered samples collected from outcrop suggest that the humic, organic-Se compounds in shale are formed during oxidative weathering and that Se oxidized by weathering is more likely to be retained by shale than by chalk. Selenium enrichment in bentonites is inferred to result from secondary processes including the adsorption of Se mobilized by groundwater from surrounding organic rich sediments to clay mineral and iron hydroxide surfaces, as well as microbial reduction of Se within the bentonitic intervals. Distinct differences are inferred for the biogeochemical pathways that affected sedimentary Se sequestration during periods of chalk accumulation compared to shale deposition in the Cretaceous seaway. Mineralogy of sediment and the nature of the organic matter associated with each of these rock types have important implications for the environmental chemistry and release of Se to the environment during weathering.  相似文献   

17.
Contribution of carbonate rock weathering to the atmospheric CO2 sink   总被引:6,自引:0,他引:6  
Z. Liu  J. Zhao 《Environmental Geology》2000,39(9):1053-1058
To accurately predict future CO2 levels in the atmosphere, which is crucial in predicting global climate change, the sources and sinks of the atmospheric CO2 and their change over time must be determined. In this paper, some typical cases are examined using published and unpublished data. Firstly, the sensitivity of carbonate rock weathering (including the effects by both dissolution and reprecipitation of carbonate) to the change of soil CO2 and runoff will be discussed, and then the net amount of CO2 removed from the atmosphere in the carbonate rock areas of mainland China and the world will be determined by the hydrochem-discharge and carbonate-rock-tablet methods, to obtain an estimate of the contribution of carbonate rock weathering to the atmospheric CO2 sink. These contributions are about 0.018 billion metric tons of carbon/a and 0.11 billion metric tons of carbon/a for China and the world, respectively. Further, by the DBL (Diffusion Boundary Layer)-model calculation, the potential CO2 sink by carbonate rock dissolution is estimated to be 0.41 billion metric tons of carbon/a for the world. Therefore, the potential CO2 source by carbonate reprecipitation is 0.3 billion metric tons of carbon/a. Received: 12 May 1999 · Accepted: 16 August 1999  相似文献   

18.
 Design of plugs for abandonment of boreholes and shafts may be governed by the bond strength between the plug and host rock. This paper presents the results of push-out tests on cement grout plugs in salt. Two types of expandable cement grouts have been tested. The average interface shear strengths ranged from 2 to 12 MPa (290 to 1740 psi). Peak shear stresses at failure, assuming an elastic stress distribution along the interface, were up to eight times higher. Standard deviations commonly reached 20%. Dissolution along the interface was observed, and may have been enhanced by clay inclusions in the salt. This dissolution appears to have reduced bond strengths. Application of the results to the design of plugs for larger openings (for example, shafts, drifts, or boreholes) is discussed. Received: 6 March 1996 · Accepted: 16 July 1996  相似文献   

19.
云南龙街盆地第四纪沉积及环境演化   总被引:5,自引:0,他引:5  
文章记述了云南龙街盆地龙街组湖相粉砂层的特征、形成环境及地层时代,并讨论了龙街粉砂层和泥石流堆积的相变关系及其发育规律。对广布于龙街盆地的红土风化壳的化学性质、类型、时代及其所反映的气候环境进行了分析。在此基础上着重讨论了龙街盆地自中—晚更新世以来的湖盆变迁、沉积规律及气候环境特征。  相似文献   

20.
The Ambassador U and multi-element deposit occurs on the SW margin of the Gunbarrel Basin, Western Australia. Low-grade, flat-lying U mineralization averaging about 2 m thick at 0.03% U occurs in lignites at the redox front at the base of the weathering profile within a laterally extensive palaeochannel network. Uranium is principally associated with organic matter within the lignitic matrix, although rare discrete U minerals, such as coffinite and uraninite, are also present. The lignite is also enriched in a suite of other elements, principally base metals and sulphur, with concentrations of 0.3 ≥ 1% Cu, Pb, Ni, Co, Zn and total rare earth elements (REE) in some samples. Other element enrichments include: Cr, Cs, Sc, Se, Ta, Ti, Th, V and Zr as detrital heavy minerals of Zr, Ti and REE (oxides and silicates) or authigenic minerals of Cu, Bi, Pb, Zn, Ni, Se, Hg, Ti, Cr, Tl, V, U and REE (sulphides, vanadates, selenides, oxides, chlorides and native metals) and diffuse lignite impregnations. The Ambassador deposit probably formed from the convergence of redox-active weathering processes to unique source/host rocks, constrained within the palaeochannel. A proximal source of U and trace elements of lamproite/carbonatite origin is probable, as constrained by U–Pb isotope and U–Th disequilibria studies. Uranium and other metals were precipitated syngenetically with organic matter as it was deposited during a humid phase in the Late Eocene. Remobilization subsequently concentrated the metals in the upper 2 m of the lignite. This may have occurred during one or more periods of weathering and associated diagenesis, with the latest episode in the last 300,000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号