首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A clinopyroxene suite from leucite–bearing lavas locatedin the Sabatini district of the Roman Volcanic Region has beeninvestigated by single–crystal X–ray diffractionmethods combined with electron probe microanalysis. The main aim of the study was to obtain crystallographic datanecessary to evaluate intracrystaUine order–disorder relationshipsin natural clinopyroxenes and related equilibria–disequilibriaphenomena in different host–rock types. Generally, the polyhedral site configurations of the clinopyroxenesinvestigated are interdependent and follow specific variationtrends related to specific host–rock types. The majorvariations are found in the tetrahedron and the octahedron;while the polyhedron M2 is essentially unchanged and occupiedby(Ca+Na). The degree of Mg–Fe2+; ordering in M1–M2, respectively,depends on the configuration of these sites, particularly M2,and is generally lower in late–crystallized (rim) clinopyroxenesthan in the corresponding higher–temperature (core) fromthe same crystals. This is' attributed to configuration relationshipsunfavourable to the Mg–Fe2+ ordering and largely dependingon the occupancy of M2. Polygenetic, early–crystallized clinopyroxenes, occasionallywith resorbed margins, indicate crystal-liquid disequilibriarelated to crystal and–or magma mixing processes.  相似文献   

2.
The volcanic rocks of the Bearpaw Mountains are part of theMontana high-potassium province, emplaced through Archaean rocksof the Wyoming Craton between 54 and 50 Ma ago. Extrusive rocks,dominated by minettes and latites, have a volume of 825 km3.The minettes range in composition from 20 to 6% MgO. The moremagnesian varieties contain the phenocryst assemblage forsterite+ Cr-spinel + diopside phlogopite. More evolved rocks areolivine-free, with an assemblage of either salite + phlogopite+ pseudoleucite or salite + phlogopite + analcime. The analcimeis thought to be secondary after leucite, produced by loss ofpotassium from the minettes. Mineral chemistry and textures,especially of clinopyroxenes, indicate that mixing between minettemagmas of varying degrees of evolution was commonplace. Compositionalvariation was further extended by accumulation of olivine +spinel + clinopyroxene phenocrysts, and by the preservationof mantle xenocrysts in the minettes. The primary minette magmasare inferred to have had 12–14% MgO and to have been generatedat 30 kb from an olivine + diopside + phlogopite-bearing source.The primary magmas evolved dominantly by fractionation of olivine+ diopside. The minettes have high contents of large ion lithophile elements(LILE) and light rare earth elements (LREE), with K2O up to6.18%, Ba 5491 ppm, Sr 2291 ppm, and Ce 99 ppm. (87Sr/86Sr)0ranges from 0.707 to 0.710 and Nd varies from –10 to–16. These data, plus high LILE/HFSE (high field strengthelements) values, are interpreted to show that the minettescontain at least three different mantle components. The lithospherewas initially depleted in Archaean times, but was metasomaticallyenriched in the Proterozoic and in the late Cretaceous and earlyTertiary. The latites have many chemical features in common with the minettes,such as potassic character and high LILE/HFSE values. They formedby fractional crystallization of minette magma in combinationwith assimilation of crustal rocks; this process enriched themagmas in SiO2 and raised Na2O/K2O and 87Sr/86Sr values. Chemicaldata for phenocrysts and bulk rocks in minettes suggest mixingbetween minette and latite magmas.  相似文献   

3.
The 1800 Kaupulehu flow on Hualalai Volcano, Hawaii, containsabundant xcnoliths of dunitc, wehrlite, and olivine clinopyroxenitewith minor gabbro, troctolite, anorthosite, and wcbstcrite.The petrography and mineral compositions of 41 dunite, wehrlite,and olivine clinopyroxenite xenoliths have been studied, andclinopyroxene separates from eight of these have been analyzedfor Ba, K, Rb, Sr, rare earth elements, 87Sr/86Sr, and 143Nd/144Nd.Temperatures of equilibration obtained by olivine-spinel andpyroxene geothermometry range from 1000 to 1200 C. Mineralogicaldata combined with published fluid inclusion data indicate depthsof origin in the range of 8–30 km. The rarity of orthopyroxene, the presence of Fe-rich olivine(Fo8189) and clinopyroxene (Fs512), and the occurrenceof high TiO2 in spinel (0.9–2.8 wt.%) and clinopyroxene(035–1.33 wt%) all indicate that the xenoliths are cumulates,not residues from partial fusion. The separated clinopyrox-eneshave 87Sr/86Sr (0-70348.0-70367) and 143Nd/144Nd (0.51293–0.51299)values that are different from Sr and Nd isotope ratios of Pacificabyssal basalts (>0.7032 and >0-5130, respectively). Also,clinopyroxenes and spinels in the xenoliths have generally higherTiO2 contents (>O.35 and >0.91 wt.%, respectively) thantheir counterparts in abyssal cumulates (<0.40 and <0.70wt%,respectively). These differences indicate that the xenolithsare not a normal component of oceanic crust. Because the xenoliths and alkalic to transitional Hualalai lavashave similar values for Cr/(Cr + Al) and Cr/(Cr + Al + Fe3+)of spinels, 87Sr/86Sr of clinopyroxenes, and whole-rock 3He/4He,we conclude that the xenoliths are cumulates from such magmas.Multiple parental magmas for the xenoliths are indicated byslightly heterogeneous 87Sr/86Sr of clinopyroxene separates.Depths of formation of the xenoliths are estimated to be {smalltilde}8–30 km. Extensive crystallization of olivine in the absence of pyroxenesand plagioclase is a characteristic and prominent feature ofHawaiian tholeiitic magmatism. Dunite xenoliths crystallizedfrom alkalic magmas have previously been reported from MaunaKea Volcano (Atwill & Garcia, 1985) and Loihi Seamount (Clague,1988). Our finding of an alkalic signature for dunite xenolithsfrom a third Hawaiian volcano, Hualalai, shows that early olivinecrystallization should be considered a characteristic not justof Hawaiian tholeiitic magmatism but also of Hawaiian alkalicmagmatism.  相似文献   

4.
The Jijal complex, covering more than 150 sq. km in the extremenorth of Pakistan, is a tectonic wedge of garnet granulitesintruded in the south by a 10 x 4 km slab of ultramafic rocks.The granulites are divisible into plagioclase-bearing (basicto intermediate) and plagioclase-free (ultrabasic to basic)types, the two types reflecting differences in bulk chemistry.Garnet + plagioclase + clinopyroxene + quartz + rutile ±hornblende ± epidote is the most common assemblage. Theplagioclase-free rocks are composed mainly of two or three ofthe minerals garnet, amphibole, clinopyroxene and epidote. Orthopyroxeneoccurs in websteritic rocks devoid of epidote. Much of the amphiboleand some epidote appear to be prograde products. Although variationdiagrams do not reveal a genetic link between the two typesof granulite, it is considered that they are comagmatic ratherthan the products of two or more unrelated magmas. The compositions of garnet (Py28–46 Alm 27–43Gro16–28),clinopyroxene (Mg44–34Fe5–17Ca51–49, Al2O33·0–9·9 per cent), orthopyroxene (with upto 5·5 per cent Al2O3), amphibole (with up to 16·3per cent Al2O3 and high Alvi/Aliv), and the abundance of garnetsuggest a high-pressure origin for the granulites. The rocksappear to have differentiated from a tholeiitic magma of oceanicaffinity or they may be genetically related to the pyroxenegranulites of Swat considered to have originally crystallizedfrom a calc-alkaline magma of island arc or continental marginaffinity. They probably crystallized in the ancient Tethyancrust/upper mantle (or less likely in a continental margin),later to be metamorphosed to granulites (670–790 °C,12–14 kb) during the collision of the Indian-Asian landmasses,and carried upwards during later Himalayan orogenic episodes. The ultramafic rocks are alpine-type in nature and devoid ofgarnet. They are dominated by diopsidites; dunites, peridotites,and harzburgites together form <50 per cent of the area ofoutcrop. The chemistry of the rocks, and their olivines (Fo92–89)and clinopyroxenes (Mg49.5–48Fe2.8–5.2Ca47.4–46.8)are similar to those of alpine complexes of the harzburgitesubtype. It is not clear whether they represent a faulted slabof suboceanic crust/upper mantle, mantle diapirs in deep orogenicroots, or dismembered ultramafic rocks differentiated from abasaltic magma. They seem to have a complex history; their presentmineralogy is suggestive of high grade metamorphism (800–850°C, 8–12 kb). They are magmatically unrelated to thegarnet granulites and were probably intruded into the latteras plastic crystalline material after both had been independentlymetamorphosed, but before the entire complex was carried tectonicallyinto its present surroundings. The abundances of the diopsiditesis in marked contrast to other alpine-type complexes and thepossibility of Ca and Si metasomatism during or before theirmetamorphism should not be totally ruled out.  相似文献   

5.
Experimental Petrology of a Highly Potassic Magma   总被引:3,自引:0,他引:3  
The melting behaviour of a highly potassic biotite mafuriteof the Central African olivine leucitite kindred has been studiedexperimentally as a function of pressure (to 30kb) temperature,and water content (0%, 5%, 15%, 25%, and 40% H2O). Olivine isthe liquidus phase up to 30 kb for all water contents studiedexcept for anhydrous (clinopyroxene on the liquidus) and 15%H2O (phlogopite on the liquidus) conditions. Analyses of phasescrystallizing from the biotite mafurite show that pressure hasvery little effect on the composition of clinopyroxene whichis extremely calcium-rich, and low in Al2O3 and TiO2 for allconditions investigated. Phlogopite has low TiO2 content andtitanphlogopite cannot be a refractory phase in the upper mantlecausing Ti-depletion in partial melts in equilibrium with titanphlogopite.There are apparently no conditions where the extremely potassicbiotite mafurite could be a partial melt from pyrolite but derivationfrom an olivine+clinopyroxene+phlogopite+ilmenite assemblageoccurring as ‘enriched’ patches in the upper mantle,is possible. Liquids in equilibrium with phlogopite as a residualphase at 30 kb would be olivine nephelinites with approximately5% K2O, Na2O/K2O 1 and TiO2 > 5+. Crystal elutriation withtransported residual phlogopite reacting (phlogopite+liquid1 olivine+liquid 2) at lower pressures provides a mechanismfor K-enrichment and generating Na2O/K2O < 1.  相似文献   

6.
A suite of mantle peridotite xenoliths from the Malaitan alnoitedisplay both trace element enrichment and modal metasomatism.Pargasitic amphibole is present in both garnet- and spinelbearingxenoliths, formed by reaction of a metasomatic fluid (representedby H2O and Na2O) with the peridotite assemblage. Two pargasite-formingreactions are postulated, whereby spinel is totally consumed: 6MgAl2O4 + 8CaMgSi2O6 + 7Mg2Si2O6 + 4H2O + 2Na2O = 4NaCa2Mg4Al3Si6O12(OH)2+ 6Mg2SiO4 or spinel is both a reactant (low Cr) and a product (high Cr): 24MgAlCrO4 + 16CaMgSi2O6 + 14Mg2Si2O6 + 8H2O + 4Na2O = 8NaCa2Mg4Al3Si6O12(OH)2+ 12MgCr2O4 + 12Mg2SiO4 Seven garnet—spinel-peridotites display cryptic metasomatismas demonstrated by the LREE enrichment in clinopyroxenes. TheLREE enrichment correlates positively with 143ND/144ND (0?512771–0?513093)which defines a mixing line between a mantle MORB source anda metasomatic fluid. Isotopic evidence (Sr and Nd) from garnet,clinopyroxene, and amphibole demonstrate this fluid has notoriginated in the alnoite sensu stricto. Calculated amphiboleequilibrium liquids show a range in La/Yb and Ce/Yb ratios similarto those calculated for the augite and subcalcic diopside megacrysts.Sr and Nd isotope analyses from amphibole are within error ofthe augite (PHN4074) and subcalcic diopside megacrysts (CRN2I6,PHN4069, and PHN4085). It is concluded that fluids emanatedfrom a proto-alnoite magma throughout megacryst fractionation,and the mixing line was generated during the crystallizationof the subcalcic diopsides. This study demonstrates that metasomatismrepresented in these xenoliths is not a prerequisite for alnoitemagmatism, but is a consequence of it.  相似文献   

7.
DUKE  J. M. 《Journal of Petrology》1976,17(4):499-521
The distribution of Ti4+, V3+, Cr3+, Mn2+, Fe(total), Co2+ andNi2+ among synthetic olivine, calcic clinopyroxene and maficsilicate liquid has been studied between 1125 and 1250 ?C underanhydrous conditions at 1 bar total pressure. The distributionof iron and magnesium among the three phases was concluded tobe independent of temperature and may be described by the twoequations Titanium and vanadiumdid not enter olivine in significant amounts. The mean valueof the ratio (wt. per cent TiO2 in Cpx)/(wt. per cent TiO2 inL) was 0.29?0.04 for assemblages in which the liquid had botholivine and hypersthene in the norm but the ratio was greaterif the liquid was nepheline normative. Vanadium was concentratedin the pyroxene in some experiments and in the liquid in others,but it was not possible to conclude whether the change in distributionbehavior was due to varying temperature or changing liquid composition.Equilibrium partitioning of chromium was not achieved but theresults indicate that Cr2O3 was most strongly enriched in clinopyroxeneand showed a slight preference for olivine over the liquid.The divalent transition elements were each enriched in olivinerelative to clinopyroxene and the degree of enrichment increasedin the order predicted by crystal field theory. The mean (wt.per cent oxide in 01)/(wt. per cent oxide in Cpx) ratios were2.0 for MnO, 2.4 for FeO, 3.9 for CoO and 5.6 for NiO. Manganesewas enriched in olivine relative to the liquid and in the liquidrelative to the clinopyroxene. Cobalt and nickel were more concentratedin the crystalline phases than in the liquid but the degreeof enrichment was markedly less in the experiments in whichthe liquids were more mafic.  相似文献   

8.
Xenolith JJG41 is from the Roberts Victor kimberlite and isa bimineralic eclogite which is striking for its Al- and Ca-richclinopyroxene crystals showing garnet exsolution lamellae. Thedevelopment of the exsolution has been interpreted as a resultof a slow cooling at depth from near-solidus conditions (c.1400?C) towards normal mantle lithosphere temperatures (Harte& Gurney, 1975). The clinopyroxene retains marked compositionalgradients adjacent to the garnet lamellae and the present paperis concerned with the generation and preservation of these diffusiongradients within a rock from the Earth's mantle In order to understand the mechanism of exsolution reactiona re-examination has been made of the microtexture and chemistryof the garnet lamellae in relation to the compositional gradientsin adjacent clinopyroxene. Three sets of garnet lamellae, whichappear to have crystallized in sequence, may be recognised:type A, large lamellae, nucleated first and closest to the transformationtemperature; type B of intermediate size and age; and type C,small lamellae, nucleated last and with the greatest overstepof the transformation temperature. The major compositional zoning in JJG41 clinopyroxene, a decreaseof Al as Si and Mg increase, is consistent with the garnet growthreaction 2Diop+Al2Si–1Mg–1=2Gros, 1Py.Ca, unlikemost of the elements, shows very flat composition profiles,but with a higher concentration than the initial Ca contentof the unexsolved clinopyroxene. Garnet lamellae are individuallyhomogeneous, but Ca contents vary between lamellae as a functionof lamellae size. In contrast the Fe/Mg distribution coefficientsat interfaces between garnet and clinopyroxene are relativelyconstant irrespective of garnet size. The redistribution of the principal cations—Ca, Fe, Mg,Al, Si—between and within the clinopyrox ene and garnet,during garnet exsolution and cooling, obviously proceeded differentlyfor different elements. Two principal stages in the coolinghistory may be identified: (1) The growth of the sets of garnetlamellae controlled by Al2Mg–1Si–1 redistributionin clinopyroxene. This redistribution was both part of the nettransfer reaction creating garnet, and an exchange reactionin clinopyroxene essential for the diffusional transport ofAl to the growing garnet. Al diffusion in clinopyroxene wasprobably the rate-limiting step, and all other cations, Ca andFe as well as Mg and Si, were mobile during this stage. (2)The occurrence, after the cessation of garnet growth, of diffusionof Fe, Mg and Ca in garnet and interdiffusion of Fe-Mg in clinopyroxene.This resulted in the setting of the KD Fe-Mg at the Cpx-Gt interfacesto a roughly constant value equivalent to approximately 1000?C,which is taken to be the final (‘freezing-in’) temperaturefor redistribution of any elements. During this post garnet-growthstage Ca also became homogenized within individual garnet lamellae,but there is no evidence of Ca equilibration with the clinopyroxene.Under the P-T conditions operating, the initial clinopyroxenecomposition probably resulted in a maximum (M2 site fully occupied)Ca content in clinopyroxene during the stage of garnet growth,and this was maintained during the post-growth stage.  相似文献   

9.
A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles   总被引:2,自引:0,他引:2  
St Kitts forms one of the northern group of volcanic islandsin the Lesser Antilles arc. Eruptive products from the Mt Liamuigacentre are predominantly olivine + hypersthene-normative, low-Kbasalts through basaltic andesites to quartz-normative, low-Kandesites. Higher-Al and lower-Al groups can be distinguishedin the suite. Mineral assemblages include olivine, clinopyroxene,orthopyroxene, plagioclase and titanomagnetite with rarer amphibole,ilmenite and apatite. Eruptive temperatures of the andesitesare estimated as 963–950°C at fO2 NNO + 1 (whereNNO is the nickel–nickel oxide buffer). Field and mineralchemical data provide evidence for magma mixing. Glass (melt)inclusions in the phenocrysts range in composition from andesiteto high-silica rhyolite. Compositional variations are broadlyconsistent with the evolution of more evolved magmas by crystalfractionation of basaltic parental magmas. The absence of anycovariation between 87Sr/86Sr or 143Nd/144Nd and SiO2 rulesout assimilation of older silicic crust. However, positive correlationsbetween Ba/La, La/Sm and 208Pb/204Pb and between 208Pb/204Pband SiO2 are consistent with assimilation of small amounts (<10%)of biogenic sediments. Trace element and Sr–Nd–Pbisotope data suggest derivation from a normal mid-ocean ridgebasalt (N-MORB)-type mantle source metasomatized by subductedsediment or sediment melt and fluid. The eruptive rocks arecharacterized by 238U excesses that indicate that fluid additionof U occurred <350 kyr ago; U–Th isotope data for mineralseparates are dominated by melt inclusions but would allow crystallizationages of 13–68 ka. However, plagioclase is consistentlydisplaced above these ‘isochrons’, with apparentages of 39–236 ka, and plagioclase crystal size distributionsare concave-upwards. These observations suggest that mixingprocesses are important. The presence of 226Ra excesses in twosamples indicates some fluid addition <8 kyr ago and thatthe magma residence times must also have been less than 8 kyr. KEY WORDS: Sr–Nd–Pb isotopes; U-series isotopes; crystal size distribution; petrogenesis  相似文献   

10.
A series of Fe and Mg partition experiments between plagioclase and silicate liquid were performed in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O under oxygen fugacities from below the IW buffer up to that of air. A thermodynamic model of plagioclase solid solution for the (CaAl,NaSi,KSi)(Fe3+,Al3+)Si2O8-Ca(Fe2+,Mg)Si3O8 system is proposed and is calibrated by regression analysis based on new and previously reported experimental data of Fe and Mg partitioning between plagioclase and silicate liquid, and reported thermodynamic properties of end members, ternary feldspar and silicate liquid. Using the derived thermodynamic model, FeOt, MgO content and Mg/(Fet+Mg) in plagioclase can be predicted from liquid composition with standard deviations of ǂ.34 wt% (relative error =9%) and ǂ.08 wt% (14%) and ǂ.7 (8%) respectively. Calculated Fe3+-Al exchange chemical potentials of plagioclase, mFe3 + ( Al )- 1 Pl{\rm \mu }_{{\rm Fe}^{{\rm 3 + }} \left( {{\rm Al}} \right)_{{\rm - 1}} }^{{\rm Pl}} agree with those calculated using reported thermodynamic models for multicomponent spinel, mFe3 + ( Al )- 1 Sp{\rm \mu }_{{\rm Fe}^{{\rm 3 + }} \left( {{\rm Al}} \right)_{{\rm - 1}} }^{{\rm Sp}} and clinopyroxene, mFe3 + ( Al )- 1 Cpx{\rm \mu }_{{\rm Fe}^{{\rm 3 + }} \left( {{\rm Al}} \right)_{{\rm - 1}} }^{{\rm Cpx}} . The FeOt content of plagioclase coexisting with spinel or clinopyroxene is affected by Fe3+/(Fe3++Al) and Mg/(Fe+Mg) of spinel or clinopyroxene and temperature, while it is independent of the anorthite content of plagioclase. Three oxygen barometers based on the proposed model are investigated. Although the oxygen fugacities predicted by the plagioclase-liquid oxygen barometer are scattered, this study found that plagioclase-spinel-clinopyroxene-oxygen and plagioclase-olivine-oxygen equilibria can be used as practical oxygen barometers. As a petrological application, prediction of plagioclase composition and fO2 are carried out for the Upper Zone of the Skaergaard intrusion. The estimated oxygen fugacities are well below QFM buffer and consistent with the estimation of oxidization states in previous studies.  相似文献   

11.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

12.
BUTLER  P.  Jr. 《Journal of Petrology》1969,10(1):56-101
Forty-seven specimens of the Wabush Iron Formation were collectedfrom ten outcrop areas. Twenty-five specimens contain the assemblage(1), quartz+clinopyroxene+calcite with or without orthopyroxene,grunerite, magnetite, ankerite, and siderite. Five specimenscontain assemblage (2), quartz+clinopyroxene+actinolite+calcite+magnetite+hematite,and two contain assemblage (3), quartz+orthopyroxene+actinolite+magnetite+hematite.In three specimens of assemblage (1), graphite occurs in theabsence of magnetite; pyrrhotite and pyrite occur separatelyor together in specimens with assemblage (1). Thirty-nine clinopyroxenes, 38 orthopyroxenes, 18 grunerites,7 actinolites, 16 calcites, 1 ankerite, and 1 siderite wereanalyzed for iron, manganese, and calcium by X-ray emissionspectrography. Magnesium contents were estimated by assumingstoichiometric proportions. Minerals occurring with hematite show low Fe/(Fe+Mg) ratios,and those in the other assemblages show higher values with awide range of variation. In orthopyroxene, Fe/(Fe+ Mg) rangesfrom 0·17 (with hematite) to 0·77. Regularity in the distributions of Fe, Mn, and Ca between pairsof coexisting minerals shows that equilibrium was attained inmost of the rocks studied. This regularity is also accomplishedin the distribution of Mn between calcite and coexisting silicatesas well as between the silicates themselves. Small differencesin the distributions of Ca and Fe depend on both outcrop areaand mineral assemblage. Phase rule considerations suggest that the specimens with dolomite-ankeriteor magnesitesiderite do not represent equilibrium assemblages.Variations in orthopyroxene compositions in assemblages withpyrite or pyrrhotite, or both, and magnetite indicate non-equilibrationof sulfides with silicates. The presence of the oxygen buffer,magnetite+hematite, attests to the immobility of oxygen duringmetamorphism. Within each outcrop area, over which the temperature and pressureare assumed to have been uniform, variations in the compositionsof the silicates in the sub-assemblages quartz+ orthopyroxene+gruneriteand quartz+orthopyroxene+clinopyroxene+calcite indicate gradientsof µH2O µCO2 and respectively. As characterizedby the composition of orthopyroxene, both gradients are relativelylow along strike, and high across strike. The direction of gradientsacross strike is almost without reversals, which is consistentwith intergranular diffusion of H2O and CO2. Phase rule restrictionsfor a majority of assemblages are not in accord with the simultaneousimposition of µH2O and µCO2 gradients on the rocks,nor the formation of an H2O-CO2 fluid phase during metamorphism.  相似文献   

13.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

14.
‘Country-rock eclogite’ pods occur enclosed withtectonic contacts within heterogeneous amphibolite-facies gneissesin the Basal Gneiss Region of Western Norway. Sixty-nine newmicroprobe analyses for garnets, clino-and orthopyroxenes, olivine,clinoamphiboles, biotite and carbonates from a number of orthopyroxeneeclogite pods in the Selje District are presented. The firstfour minerals are primary whilst the others, of which the amphibolesare described in some detail, formed during a subsequent butstill early stage in eclogite history. The primary minerals have a wider range of compositions thanorthopyroxene eclogites from other geological environments;jadeite-rich clinopyroxene and unusually grossular-poor garnetsare described from this environment for the first time. Sidero-magnesiteoccurs in apparent equilibrium with primary eclogite minerals.The early amphiboles have apparently grown at the expense of,but nevertheless in equilibrium with, primary minerals throughreactions involving OH, K+, Na+, and possibly Mg-bearing fluids.Magnesio-cummingtonite intergrown with actinolite is recognizedas an early phase in one eclogite pod. The early amphibolescan be distinguished from the symplectitic amphiboles by thelower Allv, Alvl, Ti and alkali contents and Fe/Fe + Mg ratiosand higher Si content of the former minerals. The symplectiticamphiboles form, together with plagioclase, during the stilllater amphibolitization of the eclogites. Fe/Mg distribution coefficients are affected by the Na contentsof clinopyroxenes and probably also by the Fe/Mg contents ofthe bulk assemblages. The former is due largely to increasingacmite content in jadeite-rich clinopyroxenes whilst the latteris tentatively attributed to lower closure temperatures of Fe-richassemblages. The Ca content in garnet is significantly relatedto both of these Na and Fe/Mg factors. Nevertheless a rangeof different distribution coefficients, including the Ca/Ca+ Mg ratio in coexisting pyroxenes, suggests a very limitedrange of temperatures of equilibration, the best estimate ofwhich is 700–850 °C. Pressures of equilibration are more difficult to assess. Onemodel, based upon the assumption of the stable occurrence ofamphiboles together with primary minerals and upon the minimumpressures necessary to transform a range of rock types to eclogite,suggests pressures of 15–28 kb at 700–850°C.A second model, based upon the Al2O3 content of primary orthopyroxeneand upon the association of sidero-magnesite with pyroxenes,suggests higher pressures (30–45 kb) over the same temperaturerange. Amphiboles are not stable under these conditions andare considered to form during a subsequent lower pressure (15–28kb) event when the low Al2O3 orthopyroxenes and sidero-magnesitesurvive metastably during an essentially isothermal history. One eclogite pod contains minerals with coarse exsolution lamellae:orthopyroxene exsolving garnet and clinopyroxene exsolving orthopyroxene.These imply high T-P processes, roughly estimated at 1200–1370°C, 30–40 kb, and hence suggest eclogite generationby igneous fractionation processes. Four T-P regimes (A, B, C, D) of mineral equilibration are recognizedin the history of the Selje district orthopyroxene eclogites,between their prior origin, presumably in the upper mantle,and their present surface exposure. This initial eclogite fractionation(regime A) occurred in an olivine-poor rather than olivine-richupper mantle environment, followed by cooling, exsolution, recrystallizationand re-equilibration (regime B) in a Precambrian tectonic environment.Subsequent history involved mineral reaction, metasomatism,and probably chemical redistribution through the medium of amphibole-formingfluids (regime C) and finally Caledonian tectonic transportinto poly-metamorphic continental basement where their survivalis thought to be due to a low activity of water. Marginal symplectiticamphibolitization (regime D), due to localized fluxing of metamorphicfluids, was the last significant petrological event prior touplift and exposure. The processes of tectonic transport aretentatively considered to represent deep level obduction processesrelated to continent/continent collision.  相似文献   

15.
Experimental Melting of Carbonated Peridotite at 6-10 GPa   总被引:2,自引:0,他引:2  
Partial melting of magnesite-bearing peridotites was studiedat 6–10 GPa and 1300–1700°C. Experiments wereperformed in a multianvil apparatus using natural mineral mixesas starting material placed into olivine containers and sealedin Pt capsules. Partial melts originated within the peridotitelayer, migrated outside the olivine container and formed poolsof quenched melts along the wall of the Pt capsule. This allowedthe analysis of even small melt fractions. Iron loss was nota problem, because the platinum near the olivine container becamesaturated in Fe as a result of the reaction Fe2SiO4Ol = FeFe–Ptalloy + FeSiO3Opx + O2. This reaction led to a gradual increasein oxygen fugacity within the capsules as expressed, for example,in high Fe3+ in garnet. Carbonatitic to kimberlite-like meltswere obtained that coexist with olivine + orthopyroxene + garnet± clinopyroxene ± magnesite depending on P–Tconditions. Kinetic experiments and a comparison of the chemistryof phases occasionally grown within the melt pools with thosein the residual peridotite allowed us to conclude that the meltshad approached equilibrium with peridotite. Melts in equilibriumwith a magnesite-bearing garnet lherzolite are rich in CaO (20–25wt %) at all pressures and show rather low MgO and SiO2 contents(20 and 10 wt %, respectively). Melts in equilibrium with amagnesite-bearing garnet harzburgite are richer in SiO2 andMgO. The contents of these oxides increase with temperature,whereas the CaO content becomes lower. Melts from magnesite-freeexperiments are richer in SiO2, but remain silicocarbonatitic.Partitioning of trace elements between melt and garnet was studiedin several experiments at 6 and 10 GPa. The melts are very richin incompatible elements, including large ion lithophile elements(LILE), Nb, Ta and light rare earth elements. Relative to theresidual peridotite, the melts show no significant depletionin high field strength elements over LILE. We conclude fromthe major and trace element characteristics of our experimentalmelts that primitive kimberlites cannot be a direct productof single-stage melting of an asthenospheric mantle. They rathermust be derived from a previously depleted and re-enriched mantleperidotite. KEY WORDS: multianvil; carbonatite melt; peridotite; kimberlite; element partitioning  相似文献   

16.
Distribution of Ferric Iron in some Upper-Mantle Assemblages   总被引:16,自引:5,他引:11  
The distribution of ferric iron among the phases of upper-mantlerocks, as a function of pressure (P), temperature (T) and bulkcomposition, has been studied using 57Fe Mssbauer spectroscopyto determine the Fe3+/Fe ratios of mineral separates from 35peridotite and pyroxenite samples. The whole-rock Fe3+ complementof a peridotite is typically shared approximately evenly amongthe major anhydrous phases (spinel and/or garnet, orthopyroxeneand clinopyroxene), with the important exception of olivine,which contains negligible Fe3+. Whole-rock Fe3+ contents areindependent of the T and P of equilibration of the rock, butshow a well-defined simple inverse correlation with the degreeof depletion in a basaltic component. Fe3+ in spinel and inboth pyroxenes from the spinel Iherzolite facies shows a positivecorrelation with temperature, presumably owing to the decreasein the modal abundance of spinel. In garnet peridotites, theFe3+ in garnet increases markedly with increasing T and P, whereasthat in clinopyroxene remains approximately constant. The complexnature of the partitioning of Fe3+ between mantle phases resultsin complicated patterns of the activities of the Fe3+ -bearingcomponents, and thus in calculated equilibrium fO2, which showlittle correlation with whole-rock Fe3+ or degree of depletion.Whether Fe3+ is taken into account or ignored in calculatingmineral formulae for geothermobarometry can have major effectson the resulting calculated T and P. For Fe-Mg exchange geothermometers,large errors must occur when applied to samples more oxidizedor reduced than the experimental calibrations, whose fO2 conditionsare largely unknown. Two-pyroxene thermometry is more immuneto this problem, and probably provides the most reliable P—Testimates. Accordingly, the convergence of P—T valuesderived for a given garnet peridotite assemblage may not necessarilybe indicative of mineral equilibrium. The prospects for thecalculation of accurate Fe3+ contents from electron microprobeanalyses by assuming stoichiometry are good for spinel, uncertainfor garnet, and distinctly poor for pyroxenes. KEY WORDS: mantle; oxidation; partitioning; peridotite; thermobarometry *Corresponding author. Present address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, B.C., V8W 2Y2, Canada  相似文献   

17.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

18.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   

19.
Petrographic and petrologic investigations of upper amphibolitefacies metacarbonates from the East Humboldt Range core complex,Nevada, provide important constraints on P-T-XCO2 conditionsand fluid flow during metamorphism. Three marble assemblagesare observed [(1)dol+cc+bt+cpx+q+ruscapkspamph; (2) cc+bt+cpx+plag+q+sphscapksp;(3) cc+cpx+plag+q+sphscapksp], all of which equilibrated withrelatively CO2-rich fluid compositions, at P-T conditions of6 kbar and 600–750C. The most recent equilibration eventis recorded in some calcsilicate gneisses where retrograde amphiboleand epidotegarnet replace clinopyroxene and plagioclase, respectively.This is attributed to infiltration of H2O-rich fluids at and/orafter peak metamorphic temperatures, which continued as therocks were cooled and rapidly uplifted after a Tertiary extension-relatedheating event. Likely sources for the retrograde fluids are the abundant pegmatiticleucogranites in the area. Volumetric fluid-rock ratios of 0.02–0.4are required to generate the retrograde assemblage, and observedleucogranite proportions are more than adequate to provide therequired volume of fluid. Estimates of retrograde fluid fluxesrange from 0.25 to 5102 cm3/cm2 for a transient temperaturegradient of 5C/m, to 3103 to 7104 cm3/cm2 for a temperaturegradient of 35C/km. These gradients are characteristic of askarn-type contact metamorphic environment and a regional crustalgeotherm, respectively. They imply different time-scales andlength-scales for the retrograde fluid flow system, with theformer more akin to a contact metamorphic setting with local,meter-scale retrograde fluid flow, and the latter to a regionalmetamorphic setting with regionally high mid- and lower-crustaltemperatures and fluid flow throughout a significant thicknessof the middle crust. Higher gradients are considered more likelygiven the proximity of leucogranites to retrogressed calc-silicategneisses, and the resultant relatively small fluxes are consistentwith a magmatic source. The length-scale of reaction within the retrograde fluid flowsystem was of the order of meters to hundreds of meters andinvolved both pervasive and (later) fracture-controlled down-temperatureflow. Retrograde fluid flow in this terrance, as well as othersdominated by magmatic volatiles, is in the form of multiplediscrete bursts of fluid released in a discontinuous mannerpotentially over long periods of time (1–10 Ma) with locallyvariable thermal gradients along the flow path.  相似文献   

20.
Paragenetic types of pyroxenes, selected according to mineralassociations, differ in their average contents of the majorcations. By comparing with the average composition it is seenthat both the Fe/(Mg+Fe) ratio and the Fe+2, Mn, Mg, Fe+3, andCr contents are determined in the main by the composition ofthe host rocks, but the AIz, Aly, Ca, and Na contents in pyroxenesare influenced by the conditions under which the rock was formed.The dependence of the Alz and Aly contents of orthopyroxenesand clinopyroxenes on temperature and pressure is shown withthe help of a new P-T diagram and by comparison with chemicalanalyses of natural pyroxenes. The correlation between the compound cations in pyroxenes isused to test the hypothesis of real isomorphous substitutionsin each paragenetic type of pyroxenes, and to determine rationalmethods of calculating pyroxene analyses into components. The calculated discriminant functions are useful for referring(with 5–10 per cent error) analyses of pyroxenes to oneof a number of paragenetic types, and in particular for distinguishingpyroxenes from magmatic and metamorphosed gabbros, and fromhigh- and low-temperature two-pyroxene granulites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号