首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

2.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

3.
Dynamical systems with three degrees of freedom can be reduced to the study of a fourdimensional mapping. We consider here, as a model problem, the mapping given by the following equations: $$\left\{ \begin{gathered} x_1 = x_0 + a_1 {\text{ sin (}}x_0 {\text{ + }}y_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{)}} \hfill \\ y_1 = x_0 {\text{ + }}y_0 \hfill \\ z_1 = z_0 + a_2 {\text{ sin (}}z_0 {\text{ + }}t_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{) (mod 2}}\pi {\text{)}} \hfill \\ t_1 = z_0 {\text{ + }}t_0 \hfill \\ \end{gathered} \right.$$ We have found that as soon asb≠0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).  相似文献   

4.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

5.
We have studied the effect of the flow in the accretion disk. The specific angular momentum of the disk is assumed to be constant and the polytropic relation is used. We have solved the structure of the disk and the flow patterns of the irrotational perfect fluid.As far as the obtained results are concerned, the flow does not affect the shape of the configuration in the bulk of the disk, although the flow velocity reaches even a half of the sound velocity at the inner edge of the disk. Therefore, in order to study accretion disk models with the moderate mass accretion rate—i.e.,
  相似文献   

6.
We present the stellar parameters of the individual components of the two old close binary systems HIP 14075 and HIP 14230 using synthetic photometric analysis. These parameters are accurately calculated based on the best match between the synthetic photometric results within three different photometric systems with the observed photometry of the entire system. From the synthetic photometry, we derive the masses and radii of HIP 14075 as \({\mathcal {M}}^A=0.99\pm 0.19 \mathcal {M_\odot }\), \(R_{A}=0.877\pm 0.08 R_\odot \) for the primary and \({\mathcal {M}}^B=0.96\pm 0.15 \mathcal {M_\odot }\), \(R_{B}=0.821\pm 0.07 R_\odot \) for the secondary, and of HIP 14230 as \({\mathcal {M}}^A=1.18\pm 0.22 \mathcal {M_\odot }\), \(R_{A}=1.234\pm 0.05 R_\odot \) for the primary and \({\mathcal {M}}^B=0.84\pm 0.12 \mathcal {M_\odot }\) , \(R_{B}=0.820\pm 0.05 R_\odot \) for the secondary. Both systems depend on Gaia parallaxes. Based on the positions of the components of the two systems on a theoretical Hertzsprung–Russell diagram, we find that the age of HIP 14075 is \(11.5\pm 2.0\) Gyr and of HIP 14230 is \(3.5\pm 1.5\) Gyr. Our analysis reveals that both systems are old close binary systems (\(\approx > 4\) Gyr). Finally, the positions of the components of both the systems on the stellar evolutionary tracks and isochrones are discussed.  相似文献   

7.
Three groups of galactic mass models, each consisting of nine inhomogeneous spheroids of two kinds are described, according to three adopted values of the total density near the Sun: 0.10, 0.15 and 0.20 M pc–3. Approximately 20% of the total mass of each model is in the halo, constructed to adequately fit recent RR Lyrae star observations. It is shown that the maxima found in the RR Lyrae star densities towards the galactic axis (Plaut, 1970) should not be interpreted as being associated with the galactic nucleus, but as the result of the greater decrease in density with increasingz over the increase in density as the galactic axis is approached. Even at the low galactic latitude of 5° (l=0°), this effect causes a 0.5 kpc correction to the distance to the galactic centre. A basic model for kpc, km s–1, M pc–3 is first constructed, mainly to satisfy structural conditions near the sun and in the halo. An attempt to optimize the basic model is made by scaling it so as to retain constant density and angular velocity near the sun, and to best fit kinematic data, including the recent re-examination of the 21-cm data of Simonson and Mader (1972). No unknown matter is required in the models, in accordance with the results of Weistrop (1972b), and, as pointed out earlier (Innanen, 1966b) the faintM-stars must be in a highly flattened spheroid. The optimizing indicates that an adequate fit to kinematics can be achieved for km s–1. More detailed results are tabulated for a representative model for which . Two new galactic density functions are discussed in the Appendix.  相似文献   

8.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

9.
EinsteinA-coefficients for transitions inSii, calculated with the atomic structure package CIV3, are used to derive the electron density sensitive emission line ratio
  相似文献   

10.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

11.
We investigate the ‘equilibrium’ and stability of spherically-symmetric self-similar isothermal blast waves with a continuous post-shock flow velocity expanding into medium whose density varies asr ahead of the blast wave, and which are powered by a central source (a pulsar) whose power output varies with time ast ω?3. We show that:
  1. for ω<0, no physically acceptable self-similar solution exists;
  2. for ω>3, no solution exists since the mass swept up by the blast wave is infinite;
  3. ? must exceed zero in order that the blast wave expand with time, but ?<2 in order that the central source injects a finite total energy into the blast wave;
  4. for 3>ωmin(?)>ω>ωmax(?)>0, where $$\begin{gathered} \omega _{\min } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} + {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} + {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \omega _{\max } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} - {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} - {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \end{gathered} $$ two critical points exist in the flow velocity versus position plane. The physically acceptable solution must pass through the origin with zero flow speed and through the blast wave. It must also pass throughboth critical points if \(\varphi > \tfrac{5}{3}\) , while if \(\varphi< \tfrac{5}{3}\) it must by-pass both critical points. It is shown that such a solution exists but a proper connection at the lower critical point (for ?>5/3) (through whichall solutions pass with thesame slope) has not been established;
  5. for 3>ω>ωmin(?) it is shown that the two critical points of (iv) disappear. However a new pair of critical points form. The physically acceptable solution passing with zero flow velocity through the origin and also passing through the blast wave mustby-pass both of the new critical points. It is shown that the solution does indeed do so;
  6. for 3>ωmin(?)>ωmax(?)>ω it is shown that the dependence of the self-similar solution on either ω or ? is non-analytic and therefore, inferences drawn from any solutions obtained in ω>ωmax(?) (where the dependence of the solutionis analytic on ω and ?) are not valid when carried over into the domain 3>ωmin(?)>ωmax(?)>ω;
  7. all of the physically acceptable self-similar solutions obtained in 3>ω>0 are unstable to short wavelength, small amplitude but nonself-similar radial velocity perturbations near the origin, with a growth which is a power law in time;
  8. the physical self-similar solutions are globally unstable in a fully nonlinear sense to radial time-dependent flow patterns. In the limit of long times, the nonlinear growth is a power law in time for 5<ω+2?, logarithmic in time for 5>ω+2?, and the square of the logarithm in time for 5=ω+2?.
The results of (vii) and (viii) imply that the memory of the system to initial and boundary values does not decay as time progresses and so the system does not tend to a self-similar form. These results strongly suggest that the evolution of supernova remnants is not according to the self-similar form.  相似文献   

12.
If fluctuations in the density are neglected, the large-scale, axisymmetric azimuthal momentum equation for the solar convection zone (SCZ) contains only the velocity correlations and where u are the turbulent convective velocities and the brackets denote a large-scale average. The angular velocity, , and meridional motions are expanded in Legendre polynomials and in these expansions only the two leading terms are retained (for example, where is the polar angle). Per hemisphere, the meridional circulation is, in consequence, the superposition of two flows, characterized by one, and two cells in latitude respectively. Two equations can be derived from the azimuthal momentum equation. The first one expresses the conservation of angular momentum and essentially determines the stream function of the one-cell flow in terms of : the convective motions feed angular momentum to the inner regions of the SCZ and in the steady state a meridional flow must be present to remove this angular momentum. The second equation contains also the integral indicative of a transport of angular momentum towards the equator.With the help of a formalism developed earlier we evaluate, for solid body rotation, the velocity correlations and for several values of an arbitrary parameter, D, left unspecified by the theory. The most striking result of these calculations is the increase of with D. Next we calculate the turbulent viscosity coefficients defined by whereC ro 0 and C o 0 are the velocity correlations for solid body rotation. In these calculations it was assumed that 2 was a linear function of r. The arbitrary parameter D was chosen so that the meridional flow vanishes at the surface for the rotation laws specified below. The coefficients v ro i and v 0o i that allow for the calculation of C ro and C 0o for any specified rotation law (with the proviso that 2 be linear) are the turbulent viscosity coefficients. These coefficients comply well with intuitive expectations: v ro 1 and –v 0o 3 are the largest in each group, and v 0o 3 is negative.The equations for the meridional flow were first solved with 0 and 2 two linear functions of r ( 0 1 = – 2 × 10 –12 cm –1) and ( 2 1 = – 6 × 10 12 cm –1). The corresponding angular velocity increases slightly inwards at the poles and decreases at the equator in broad agreement with heliosismic observations. The computed meridional motions are far too large ( 150m s–1). Reasonable values for the meridional motions can only be obtained if o (and in consequence ), increase sharply with depth below the surface. The calculated meridional motion at the surface consists of a weak equatorward flow for gq < 29° and of a stronger poleward flow for > 29°.In the Sun, the Taylor-Proudman balance (the Coriolis force is balanced by the pressure gradient), must be altered to include the buoyancy force. The consequences of this modification are far reaching: is not required, now, to be constant along cylinders. Instead, the latitudinal dependence of the superadiabatic gradient is determined by the rotation law. For the above rotation laws, the corresponding latitudinal variations of the convective flux are of the order of 7% in the lower SCZ.  相似文献   

13.
The emission spectrum of comet Skoritchenko–George (C/1989 VI), unusual in its information content, was obtained on February 26.7 UT, 1990, with the use of a TV scanner installed on the 6-m BTA reflector of the Special Astronomical Observatory of the Russian Academy of Sciences (SAO RAS) in Nizhni Arkhyz. Detailed identification of the emission lines of this comet was made. The observed spectrum contains 311 emission lines, including those of the molecules. Among others, the lines of the negative carbon C 2 - ion and the lines corresponding to the electron transition in the neutral CO molecule are discovered. The presence of a large number of lines of the neutral CO molecule (the Asundi bands and the triplet bands) in the visible region is one of the uncommon features of the emission spectrum of this comet. The triplet lines : 15–3, 13–2, 11–2, 9–1, 8–1, 7–1, 7–0, 5–0, 4–0; : 7–0, 6–0, 5–0; and a" : 11–1 (K = 3, 4); 16–4 (K= 0, 1, 2, 4); 9-0 (K= 0, 1, 2); 8–0 (K= 0) were identified for the first time. Prior to this work, the lines of CO in the visible range were observed only in the spectrum of comet C/1979 VI (Bradfield) in 1989.  相似文献   

14.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

15.
Pulsation period changes in Mira type variables are investigated using the stellar evolution and nonlinear stellar pulsation calculations. We considered the evolutionary sequence of stellar models with initial mass \({M_{ZAMS}} = \;3{M_ \odot }\) and population I composition. Pulsations of stars in the early stage of the asymptotic giant branch are shown to be due to instability of the fundamental mode. In the later stage of evolution when the helium shell source becomes thermally unstable the stellar oscillations occur in either the fundamental mode (for the stellar luminosuty \(L < 5.4 \times {10^3}{L_ \odot }\)) or the first overtone (\(L > 7 \times {10^3}{L_ \odot }\)). Excitation of pulsations is due to the κ-mechanism in the hydrogen ionization zone. Stars with intermediate luminosities \(5.4 \times {10^3}{L_ \odot } < L < 7 \times {10^3}{L_ \odot }\) were found to be stable against radial oscillations. The pulsation period was determined as a function of evolutionary time and period change rates \(\dot \Pi \) were evaluated for the first ten helium flashes. The period change rate becomes the largest in absolute value \((\dot \Pi /\Pi \approx - {10^{ - 2}}y{r^{ - 1}})\) between the helium flash and the maximum of the stellar luminosity. Period changes with rate \(\left| {\dot \Pi /\Pi } \right| \geqslant - {10^{ - 3}}y{r^{ - 1}}\) take place during ≈500 yr, that is nearly one hundredth of the interval between helium flashes.  相似文献   

16.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

17.
Analysis of the radial velocities based on spectra of high (near the H α line) and moderate (4420–4960 Å) resolutions supplemented by the published radial velocities has revealed the binarity of a bright member of the young open star cluster χ Per, the star V622 Per. The derived orbital elements of the binary show that the lines of both components are seen in its spectrum, the orbital period is 5.2 days, and the binary is in the phase of active mass exchange. The photometric variability of the star is caused by the ellipsoidal shape of its components. Analysis of the spectroscopic and photometric variabilities has allowed the absolute parameters of the binary’s orbit and its components to be found. V622 Per is shown to be a classical Algol with moderate mass exchange in the binary. Mass transfer occurs from the less massive (\({M_1} = 9.1 \pm 2.7{M_ \odot }\)) but brighter (\(\log {L_1} = 4.52 \pm 0.10{L_ \odot }\)) component onto the more massive (\({M_2} = 13.0 \pm 3.5{M_ \odot }\)) and less bright (\(\log {L_2} = 3.96 \pm 0.10{L_ \odot }\)) component. Analysis of the spectra has confirmed an appreciable overabundance of CNO-cycle products in the atmosphere of the primary component. Comparison of the positions of the binary’s components on the T eff–log g diagram with the age of the cluster χ Per points to a possible delay in the evolution of the primary component due to mass loss by no more than 1–2Myr.  相似文献   

18.
Available satellite, rocket and balloon observations on cosmic X- and gamma ray background are critically examined to understand the spectral characteristics of the radiation. Appropriate corrections have been applied to the balloon observations to account for the multiple Compton scattering of X-rays in the atmosphere. It is shown that within the experimental uncertainties, all the available observations of cosmic X- and gamma ray background in the energy range 1 keV-1 MeV are consistent with a single spectrum of type $${\text{d}}N/{\text{d}}E = 30 E^{ - 2.0 \pm 0.2} {\text{photons cm}}^{{\text{ - 2}}} {\text{s}}^{{\text{ - 1}}} {\text{sr}}^{{\text{ - 1}}} {\text{keV}}^{{\text{ - 1}}} $$ .  相似文献   

19.
In this paper, we study the following three-dimensional mappings $$T:\left\{ \begin{gathered} x_{n + 1} = x_n + y_n + B sin z_n , \hfill \\ y_{n + 1} = y_n + A sin x_{n + 1} , \hfill \\ z_{n + 1} = z_n + C sin y_{n + 1} + D, \hfill \\ \end{gathered} \right.\left( {\bmod 2\Pi } \right)$$ where A, B, C, D are parameters. When D>BC and 2π/D is an irrational number, we find numerically-two-dimensional and one-dimensional invariant manifolds, but when DBC and 2π/D is a rational number we find numerically one-dimensional manifolds and the fixed points for some cycles.  相似文献   

20.
We propose to the NSFA (the IAU Working Group on Numerical Standards for Fundamental Astronomy) the following representative values and realistic uncertainties for the masses of the three largest asteroids (Ceres, Pallas, Vesta), to be used as the current best estimates:
Unlike the values previously adopted in the Astronomical Almanac, these are consistent with nearly all of the twenty or so modern accurate determinations from various authors. We also have proposed the following values for the Moon-Earth mass ratio and the astronomical unit in meters obtained from the ephemeris improvement processes at JPL in Pasadena and at IAA RAS in St.Petersburg: M Moon/M Earth =  0.0123000371(4) and AU =  149597870700(3) m. The numerical value of the AU in meters is identical in both the TDB-based and the TCB-based systems of units if one uses the conversion proposed by Irwin and Fukushima, Brumberg and Groten, Brumberg and Simon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号