共查询到16条相似文献,搜索用时 93 毫秒
1.
藏南沉错沉积物的粒度特征及其古环境意义 总被引:35,自引:2,他引:35
通过对藏南沉错粒度参数的分析 ,并结合与其它环境代用指标的比较 ,可以将本地区约 1 40 0年来环境变化分为四个阶段 :约 5 93A.D.~ 82 1 A.D.是湖泊水位相对较高而且变化频繁的时期 ,反映了波动较大且比较湿润的气候状况 ;约 82 1 A.D.~ 1 343A.D.是一个较长的气候相对稳定时期 ,粒度指示该阶段湖泊扩张 ,湖面升高 ,反映了湿润的气候状况 ;约 1 343A.D.~ 1 892 A.D.是一个气候波动十分剧烈且频繁的时期 ,其中约 1 60 2 A.D.前后可能出现了一次短时间的流水突然增加 ,而在这前后各有一个浅水阶段 ( 1 343A.D.~ 1 5 1 2 A.D.和 1 670 A.D.~ 1 892 A.D.) ,反映了湖泊补给程度的减弱 ;1 892 A.D.~1 998A.D.是一个相对稳定的时期 ,湖面变化不太明显 ,而 1 892 A.D.前后具有一个明显的补给水动力减弱的变化。粒度参数所反映的湖面波动与环境变化得到了其他环境代用指标较好的支持。 相似文献
2.
藏南沉错地区近1400年来的介形类与环境变化 总被引:7,自引:0,他引:7
通过分析藏南沉错CC1孔的介形类动物群所提供的古环境信息,探讨近1400年来的湖泊演化。CC1孔介形类共计7属15种。据其属种,数量及生态特征,可划分为7个组合,同时发现1400年来沉错环境变化可分为3个时期:(1)公元6世末-14世纪下半叶沉错主要为较深水湖,其中大约在708-780年和1199-1213年湖泊迅速扩大加深;(2)14世纪下半叶-19世纪末沉错主要为浅水湖,其中大约在1454-1525年,1645-1670年和1803-1891年3个时段湖泊强烈退缩,环境极不稳定,而大约在1731-1803年湖泊发生逆向转化,湖水增多,湖面抬升;(3)19世纪末至今沉错由较深水湖转变为浅水湖,20世纪60年代以前为较深水湖,其中大约在1929-1935年湖泊急剧加深,20世纪70年代以来湖泊退缩,湖水变浅。 相似文献
3.
古湖岸堤是湖泊湖面变化的地貌学证据,通过古湖岸堤沉积年代学研究可重建地质时期湖泊演化历史。青藏高原内陆湖泊众多,保存了大量的第四纪时期古湖岸堤,是研究过去湖泊演化和气候变化信息的重要载体。对青藏高原班戈错盐湖北岸和东岸的低位连续古湖岸堤开展了地貌调查和光释光年代学研究。结果表明班戈错自末次冰消期(13. 5±1. 2 ka BP)以来,湖面整体呈波动下降过程,期间出现了4期湖面稳定阶段,分别在末次冰消期(13. 5±1. 2~11. 2±1. 0 ka BP)、全新世早中期(10. 1±0. 8~6. 5±0. 5 ka BP)、全新世后期(4. 2±0. 4~3. 1±0. 2 ka BP)以及全新世晚期(1. 7±0. 1~1. 2±0. 1 ka BP)。全新世晚期约1. 7 ka BP以后湖面迅速退缩,湖泊蒸发浓缩进入盐湖阶段。在末次冰消期班戈错高湖面形成主要与北半球太阳辐射强度增加引起气温升高,导致区域冰雪融水量增加相关,而在全新世湖面变化主要受印度季风强度变化控制。 相似文献
4.
藏南沉错湖泊沉积多指标揭示的2万年以来环境变化 总被引:22,自引:1,他引:22
通过对藏南沉错湖芯TC1孔的研究,分析了TC1孔的粒度、TOC、TN、C/N、Fe/Mn、Sr/Ba以及环境磁学参数等环境代用指标,基本上获得了这一地区2万年以来的环境变化记录。结果显示约19 800~18 000 Cal aBP的温度下降在各指标中具有明显的反映;约16 000 Cal aBP左右,温度在一次跃动上升之后,随即出现急剧下降;约15 200~12 000 Cal aBP,是降温之后的缓慢回升过程;约12 000~9 500 Cal aBP,各种指标均显示湖区环境处于不适宜阶段,特别是11 600~10 400 Cal aBP,湖区环境显著恶化。进入全新世后,湖区环境经历了3次明显的暖期(约9 500~7 600 Cal aBP、约6 800~5 800 Cal aBP、约4 800~3 800 Cal aBP) 和2次冷期(约7 600~6 800 Cal aBP、约5 800~4 800 Cal aBP),呈现出暖干/冷湿的交替规律,具有南亚季风(西南季风) 区气候变化的特征。沉错湖区2万年来的气候环境变化序列中的某些特征时段与格陵兰冰芯记录和青藏高原其他记录相比具有较好的一致性,反映了湖区及藏南地区的气候环境演变特征具有全球性特征。 相似文献
5.
基于曹娥江下游星一村钻孔(XYC)1717个沉积物样品的粒度分析,探讨钱塘江南岸地区全新世沉积环境记录。初步结论如下:①基于粒度组成,XYC孔沉积物分为粉砂质砂、砂质粉砂、粉砂、粘土质粉砂等4种岩性,自下而上分为9个单元,组成多个粒度粗细变化旋回。其中,第1、4两层为粉砂质砂,砂含量高于粉砂,粘粒含量10%~15%,分选差,动力条件复杂;第3、5两层属砂质粉砂,粉砂为主但含量不超过70%,砂含量20%以上,粘粒含量低;第2、7、9三层为粉砂,粉砂含量超过70%,粘粒、砂含量均低于20%;第6、8两层为粘土质粉砂,粉砂含量高于70%,粘粒含量20%以上。②基于C-M图最大搬运动能和平均搬运动能强弱及其变化幅度分析,初步识别出4种沉积相,自下而上依次为河流相、潮坪相、浅海相、湖沼相。第1、2两层为高能且不稳定的水动力搬运环境,属河流相沉积;第3~7层,最大搬运动能减弱,搬运动力与上虞近海滩涂样品SYTT相似,为潮坪相沉积;第8~9层,搬运动能低且变幅小,属低能静水沉积环境;第8层下段为浅海相,该层上段至第9层为湖沼相。③粒度纵向变化表明,粘粒含量自下而上波动增加;砂含量自下而上波动减少,平均粒径向上变细、分选性向上变好。XYC孔记录了该地区9690~5131 cal.a BP时段海面上升,达到高海面继而又海退的过程。研究结果有利于进一步探索钱塘江流域的古环境演变特征。 相似文献
6.
内蒙古黄旗海湖泊沉积物粒度指示的湖面变化过程 总被引:8,自引:0,他引:8
内蒙古黄旗海是位于东亚夏季风尾闾与冬季风腹地的一个封闭流域,其湖泊沉积敏感并反映了区域冬夏季风变化的历史。基于黄旗海北部湖滩上的H3剖面,在高分辨率年代序列的基础上,利用粒度特征,特别是沉积物各粒级的时间序列变化特征,探讨了古湖泊水位变化、剖面沉积环境过程与冬季风的风尘记录。研究结果表明,8.0~5.1 ka BP,气候暖湿,湖泊水量丰富,为相对稳定的深水-半深水环境,为全新世气候最适宜期,降尘微弱;但在6.7~5.5 ka BP期间存在两次明显的湖面回落,降沉剧烈的气候恶化事件,揭示了气候适宜期气候也存在短暂的不稳定性。5.1~4.0 ka BP,气候逐渐变得冷干,风力作用较强,降尘加剧,湖面波动较大;3.6~2.2 ka BP,剖面所在位置演变为浅滩沼泽相,并可能季节性暴露地表。 相似文献
7.
11DT02孔位于南黄海辐射沙脊群东北部里磕脚沙脊南坡,通过沉积相分析、粒度统计,结合年代地层数据,重建晚更新世以来里磕脚沙脊的长周期环境演化,分析沙脊成因、厘定沙脊发育年代。研究表明:里磕脚沙脊从下至上由潮滩相、硬黏土相、潮滩相和潮流沙脊相组成。潮流沙脊和潮滩由粉砂、细砂和少量黏土组成,两者均成正偏态分布。潮流沙脊和潮滩在概率累积曲线上分别表现为三段式和四段式分布,以跳跃次总体为主,并呈双跳跃特点。研究区晚更新世经历海平面下降发育潮滩环境,到完全暴露形成标志性的“硬黏土”层;全新世初期经历海侵,研究区复又开始潮滩沉积,随后被海水完全淹没,潮流作用渐强,改造下伏潮滩和“硬黏土”,逐渐堆积成高差最大达30 m的脊槽地形。 相似文献
8.
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×109 m3 and 3.41×108 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×1010 m3 and 2.42×108 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×108 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×108 t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4–26.0 kg/m3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997. 相似文献
9.
选取枪勇冰川径流-卡鲁雄曲(河)-沉错(湖)为研究区域,开展高原湖泊及其补给河流与冰川径流的水化学特征研究,并探讨影响主离子组成的主控因素。结果表明:夏季湖水主要离子呈均匀混合状态,pH值、电导率、TDS及优势阴阳离子在整个湖泊空间上变化不显著;总体上,从上游冰川融水径流、河水至下游湖泊,离子浓度呈现上升趋势;融水径流及河水的水化学类型主要受岩石风化作用控制,表现为SO42--Ca2+-Mg2+类型;沉错湖水的水化学类型主要受蒸发结晶作用控制,表现为SO42--Na+-Ca2+类型,在蒸发作用下Ca2+逐渐沉淀析出,Na+浓度不断升高而成为绝对优势阳离子。 相似文献
10.
采用1:5万地形图、Landsat MSS/TM/ETM+/OLI遥感影像及数字高程模型数据,利用遥感和地理信息系统技术,并结合狮泉河、和田和于田3个气象站点1968-2013年的气温、降水量数据对松木希错流域的冰川、湖泊面积变化及其原因进行分析。结果表明:① 1968-2013年流域冰川面积不断退缩,由139.25 km2减少至137.27±0.02 km2,共减少1.98±0.02 km2,减少百分比为1.42%,2001年以后冰川退缩速度加快;② 1968-2013年松木希错面积不断扩张,由25.05 km2增加至32.62±0.02 km2,共扩张7.57±0.02 km2,扩张百分比为30.22%,且2001年之后扩张速率加快,在年代际上与冰川的退缩具有较好的耦合性;③ 1968-2013年湖面潜在蒸散量减少和降水增加分别是导致湖泊扩张的第一和第二影响因素,而升温引起的冰川、冻土融水增加有一定贡献,但影响较小且在年际尺度上不显著。 相似文献
11.
对青藏高原中南部纳木错长332cm的NMLC1孔湖芯研究发现,沉积物的介形类动物群计有6属15种。介形类属种生态特征和组合变化分析表明这些介形类对环境条件具有敏感性,其组合能够很好地反映过去环境变化的特征。结果表明,8.4ka以来具有三个不同的环境变化时期:早期在8400~6800aBP,湖泊由浅向深发展,环境具有相对冷湿的特征:中期在6800~2500aBP,湖泊深度逐渐加大,环境经历了暖湿-冷湿-冷干的变化.其中由冷湿向冷干的转化奠定了纳木错现今环境条件的基础:晚期在2500--9aBP,湖泊深度继续增加,这个时期的较早阶段,继续保持了前一时期的冷干特点,但湖水盐度可能开始增加.较晚阶段的冷干化加剧,陆面流水的活跃性大大降低。研究发现,纳木错NMLC1钻孔介形类黑色壳体的高峰值与介形类的最大生产量相一致,并且与沉积水动力条件增强相适应.指示了这些黑壳的产生与介形类的大量繁殖处于同一阶段.并且主要为异地搬运为主。钻孔中出现大量Candona幼虫壳体.其原因可能与沉积环境的水动力条件迅速改变有关。 相似文献
12.
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assemblages and the ostracods ecological features, which are sensitive to the changing environment, three main stages can be distinguished as follows: Stage I was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage II was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of climate, from wet-cold to dry-cold during this period, had constructed the basis of present environment in the Nam Co. Stage III was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simultaneous with the high prolificacy of ostracod, and transported from other places. The abundance of Candona juvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment. 相似文献
13.
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assem-blages and the ostracods ecological features, which are sensitive to the changing environ-ment, three main stages can be distinguished as follows: Stage I was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage II was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of cli-mate, from wet-cold to dry-cold during this period, had constructed the basis of present en-vironment in the Nam Co. Stage III was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simulta-neous with the high prolificacy of ostracod, and transported from other places. The abun-dance of Candona juvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment. 相似文献
14.
ShiQiao Zhou 《寒旱区科学》2020,12(6):430-435
Tibetan lake levels are sensitive to global change, and their variations have a large impact on the environment, local agriculture and animal husbandry practices. While many remote sensing data of Tibetan lake level changes have been reported, few are from in-situ measurements. This note presents the first in-situ lake level time series of the central Tibetan Plateau. Since 2005, daily lake level observations have been performed at Lake Nam Co, one of the largest on the Tibetan Plateau. The interannual lake level variations show an overall increasing trend from 2006 to 2014, a rapid decrease from 2014 to 2017, and a surge from 2017 to 2018. The annual average lake level of the hydrological year (May-April) rose 66 cm from 2006 to 2014, dropped 59 cm from 2014 to 2017, and increased 20 cm from 2017 to 2018, resulting in a net rise of 27 cm or an average rate of about 2 cm per year. Compared to the annual average lake level based on the calendar year, it is better to use the annual average lake level based on the hydrological year to determine the interannual lake level changes. As the lake level was stable in May, it is appropriate to compare May lake levels when examining interannual lake level changes with fewer data. Overall, remote sensing results agree well with the in-situ lake level observations; however, some significant deviations exist. In the comparable 2006-2009 period, the calendar-year average lake level observed in-situ rose by 10-11 cm per year, which is lower than the ICESat result of 18 cm per year. 相似文献
15.
纳木错流域近30年来湖泊-冰川变化对气候的响应 总被引:19,自引:1,他引:19
Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "inte-grated method" with the support of GIS. Results show that from 1970 to 2000, lake area in-creased from 1942.34 km2 to 1979.79 km2 at a rate of 1.27 km2/a, while glacier area de-creased from 167.62 km2 to 141.88 km2 at a rate of 0.86 km2/a. The increasing rate of lake in 1991-2000 was 1.76 km2/a that was faster than 1.03 km2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km2/a and 0.80 km2/a respectively.Important factors, relevant to lake and glacier response to the climate, such as air tempera-ture, precipitation, potential evapotranspiration and their values in warm and cold seasons,were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the gla-cier melting water, increase of precipitation and obvious decrease of potential evapotranspi-ration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating. 相似文献
16.
Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by “inte-grated method” with the support of GIS. Results show that from 1970 to 2000, lake area in-creased from 1942.34 km2 to 1979.79 km2 at a rate of 1.27 km2/a, while glacier area de-creased from 167.62 km2 to 141.88 km2 at a rate of 0.86 km2/a. The increasing rate of lake in 1991–2000 was 1.76 km2/a that was faster than 1.03 km2/a in 1970–1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km2/a and 0.80 km2/a respectively. Important factors, relevant to lake and glacier response to the climate, such as air tempera-ture, precipitation, potential evapotranspiration and their values in warm and cold seasons, were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the gla-cier melting water, increase of precipitation and obvious decrease of potential evapotranspi-ration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating. 相似文献