首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There was a net influx of suspended particulate matter to the uppermost part of the Rhode River estuary during the several years of this study. Most of the influx was due to episodic discharges of suspended sediment from the watershed during heavy rains. In contrast, tidal exchange of particulate matter was not related to rainstorms. Sediment composition data and historical records indicate that marsh accretion accounts for only 13% of the sediment trapping although marshes occupy 60% of the study area. Influx of particulate matter to the marshes is directly related to the amount of time they are submerged during tidal cycles.  相似文献   

2.
A year-long study of incident and underwater light transmittance (400–800 nm) in the Rhode River, Maryland, a tidal tributary to Chesapeake Bay, indicated that light transmittance responded in both intensity and spectral quality to changes in the amount and type of dissolved and suspended materials in the water. At times of relatively clear water, transmittance was similar to that previously reported in the literature for coastal waters. With high concentrations of suspended and dissolved materials in the water, attenuation of irradiance was high in the upper part of the water column and different for the various wave bands, depending on the type of material present. At such times, attenuation was higher in the upper part of the water column under sunny, clear skies than on cloudy days. We believe this to be due to higher concentrations of pigments and suspended particles in the water on sunny days, increasing the scattering and adsorption. A second factor was a lower average cosine on cloudy days, decreasing the effect of scattering on the average path length per meter of depth. High attenuation coefficients in the middle of the spectrum are attributed to accessory pigments. Regression of the diffuse attenuation coefficient on eight water-quality parameters explained up to 93% of the variance in the attenuation coefficient. Chlorophylls a and c and mineral suspensates were the three most important variables for data taken under clear skies. In contrast, under cloudy skies, the three most important variables were different for different wavelengths. Models of irradiance attenuation in turbid estuarine waters require the use of more variables than models for open ocean waters.  相似文献   

3.
Degraded water quality due to water column availability of nitrogen and phosphorus to algal species has been identified as the primary cause of the decline of submersed aquatic vegetation in Chesapeake Bay and its subestuaries. Determining the relative impacts of various nutrient delivery pathways on estuarine water quality is critical for developing effective strategies for reducing anthropogenic nutrient inputs to estuarine waters. This study investigated temporal and spatial patterns of nutrient inputs along an 80-km transect in the Choptank River, a coastal plain tributary and subestuary of Chesapeake Bay, from 1986 through 1991. The study period encompassed a wide range in freshwater discharge conditions that resulted in major changes in estuarine water quality. Watershed nitrogen loads to the Choptank River estuary are dominated by diffuse-source inputs, and are highly correlated to freshwater discharge volume. in years of below-average freshwater discharge, reduced nitrogen availability results in improved water quality throughout most of the Choptank River. Diffuse-source inputs are highly enriched in nitrogen relative to phosphorus, but point-source inputs of phosphorus from sewage treatment plants in the upper estuary reduce this imbalance, particularly during summer periods of low freshwater discharge. Diffuse-source nitrogen inputs result primarily from the discharge of groundwater contaminated by nitrate. Contamination is attributable to agricultural practices in the drainage basin where agricultural land use predominates. Groundwater discharge provides base flow to perennial streams in the upper regions of the watershed and seeps directly into tidal waters. Diffuse-source phosphorus inputs are highly episodic, occurring primarily via overland flow during storm events. Major reductions in diffuse-source nitrogen inputs under current landuse conditions will require modification of agricultural practices in the drainage basin to reduce entry rates of nitrate into shallow groundwater. Rates of subsurface nitrate delivery to tidal waters are generally lower from poorly-drained versus well-drained regions of the watershed, suggesting greater potential reductions of diffuse-source nitrogen loads per unit effort in the well-drained region of the watershed. Reductions in diffuse-source phosphorus loads will require long-term management of phosphorus levels in upper soil horizons. *** DIRECT SUPPORT *** A01BY074 00021  相似文献   

4.
We investigated seasonal and tidal-monthly, suspended particulate matter (SPM) dynamics in the Columbia River estuary from May to December 1997 using acoustic backscatter (ABS) and velocity data from four long-term Acoustic Doppler Profiler (ADP) moorings in or near the estuarine turbidity maximum (ETM). ABS profiles were calibrated and converted to total SPM profiles using pumped SPM samples and optical backscatter (OBS) data obtained during three seasonal cruises. Four characteristic settling velocity (W s) classes were defined from Owen Tube samples collected during the cruises. An inverse analysis, in the form of a non-negative least squares minimization, was used to determine the contribution of the four,W s-classes to each, total SPM profile. The outputs from the inverse analyses were 6–8 mo time-series ofW s-specific SPM concentration and transport profiles at each mooring. The profiles extended from the free surface to 1.8–2.7 m from the bed, with 0.25–0.50 m resolution. These time series, along with Owen Tube results and disaggregated size data, were used to investigate SPM dynamics. Three non-dimensional parameters were defined to investigate how river flow and tidal forcing affect particle trapping: Rouse numberP (balance between vertical mixing and settling) trapping efficiencyE (ratio of maximum SPM concentration in the estuary to fluvial source concentration), and advection numberA (ratio of height of maximum SPM concentration to friction velocity). The most effective particle trapping (maximum values ofE) occurs on low-flow neap tides. The location of the ETM and the maximal trapping migrated seasonally in a manner consistent with the increase in salinity intrusion length after the spring freshet. Maximum advection (high values ofA) occurred during highly stratified neap tides.  相似文献   

5.
 The major ion chemistry of the Garonne River is indicative of seasonal variations in the weathering dynamics of the drainage basin. Using the geochemical model MEGA for calculation of the contribution of atmospheric CO2 to the total bicarbonate fluxes exported by the Garonne River allows estimations of the concentrations of the major dissolved elements that originate from silicate- and carbonate-rock weathering. The molecular ratio SiO2/Al2O3 was calculated for the 1989–1992 period to identify the main type of weathering in the Garonne River, and montmorillonite was shown to be the major mineral occurring in the weathering products. The seasonal variations of the SiO2/Al2O3 ratio also showed that removal of silica was accelerated during humid periods. Revision received: 14 May 1999 · Accepted: 12 January 2000  相似文献   

6.
7.
The basal area and productivity of managrove wetlands are described in relation to selected soil properties to understand the general pattern of optimum forest stature at the mouth of estuaries in the Everglades, such as the Shark River Slough, Florida (U.S.). The basal area of mangroves decreases from 40.4 m2 ha−1 and 39.7 m2 ha−1 at two stations 1.8 km and 4.1 km from the estuary mouth to 20.7 m2 ha−1 and 19.6 m2 ha−1 at two sites 9.9 km and 18.2 km from the mouth, respectively. The gradient in basal area at these four sites is mostly the result of approximately 34 yr of growth since Hurricane Donna. Wood productivity is higher in the lower estuary (10.7 Mg ha−1 yr−1 and 12.0 Mg ha−1 yr−1) than in the upper estuary (3.2 Mg ha−1 yr−1 and 4.2 Mg ha−1 yr−1). Porewater salinity among these four mangrove sites during seasonal sampling in 1994 and 1995 ranged from 1.6 g kg−1 to 33.5 g kg−1, while sulfide was generally<0.15 mM at all sites. These soil values indicate that abiotic stress cannot explain the decrease in forest structure along this estuarine gradient. Concentrations of nitrogen (N) and phosphorus (P) are more closely related to patterns of forest development, with higher soil fertility at the mouth of the estuary as indicated by higher concentrations of extractable ammonium, total soil P, and available P, along with higher ammonium production rates. The more fertile sites of the lower estuary are dominated by Laguncularia racemosa, whereas the less fertile sites in the intermediate and upper estuary are dominated by Rhizophora mangle. Relative N mineralization per unit of total N is higher in the lower estuary and is related positively to concentrations of available P, indicating the importance of turnover rates and nutrient interactions to soil fertility. Concentrations of Ca-bound P per volume soil in the lower estuary is 40-fold higher than in the upper estuary, and along with an increase in residual P in the upper estuary, indicate a shift from mineral to organic P along the estuarine gradient. Mineral inputs to the mouth of Shark River estuary from the Gulf of Mexico (rather than upland inputs) apparently control the patterns of mangrove structure and productivity.  相似文献   

8.
The salinity intrusion in the Fraser estuary, Canada, migrates landward during the rising tide and is flushed downstream on the falling tide. Suspended sediment concentrations are higher during unstratified flows than during stratified conditions. Mixing between the upper layer and the salinity intrusion is restricted by a strong density interface on the rising tide but enhanced mixing occurs across a weak salinity gradient on the falling tide. A weakly-developed estuarine turbidity maximum (ETM) and positive internal waves occur at the tip of the salinity intrusion as it migrates seaward. Spectral analyses of optical backscatter probe time series indicate that sediment movement from the upper layer is restricted by the density interface on the rising tide. During the falling tide, sediment mixing is enhanced by internal waves at the surface of the ETM. Internal waves generated at the density interface have a higher frequency during the rising tide than the falling tide.  相似文献   

9.
In this study rates of oxygen, ammonium (NH4 +), nitrate (NO3 ), nitrite (NO2 ), and nitrous oxide (N2O) fluxes, nitrogen (N) fixation, nitrification, and denitrification were compared between two intertidal sites for which there is an abundant global literature, muddy and sandy sediments, and two sites representing the rocky intertidal zone where biogeochemical processes have scarcely been investigated. In almost all sites oxygen production rates greatly exceeded oxygen consumption rates. During daylight, NH4 + and NO3 uptake rates together with ammonification could supply the different N requirements of the primary producer communities at all four sites; N assimilation by benthic or epilithic primary producers was the major process of dissolved inorganic nitrogen (DIN) removal; N fixation, nitrification, and denitrification were minor processes in the overall light DIN cycle. At night, distinct DIN cycling processes took place in the four environments, denitrification rates ranged from 9 ± 2 to 360 ± 30 μmol N2 m−2 h−1, accounting for 10–48% of the water column NO3 uptake; nitrification rates varied from 0 to 1712 ± 666 μmol NH4 + m−2 h−1. A conceptual model of N cycle dynamics showed major differences between intertidal sediment and rocky sites in terms of the mean rates of DIN net fluxes and the processes involved, with rocky biofilm showing generally higher fluxes. Of particular significance, the intertidal rocky biofilms released 10 times the amount of N2O produced in intertidal sediments (up to 17 ± 6 μmol N2O m−2 h−1), representing the highest N2O release rates ever recorded for marine systems. The biogeochemical contributions of intertidal rocky substrata to estuarine and coastal processes warrant future detailed investigation.  相似文献   

10.
The unique database of water quality measurements made in the Seine estuary over 45 years by the Service de la Navigation de la Seine at Rouen is used here to reconstruct the evolution of oxygen status in the estuary and the nutrient fluxes to the Seine Bight during the last half century. The Riverstrahler model is used to establish the link between these long-term trends in the functioning of the Seine system and the evolution of agricultural, domestic, and industrial activity in the watershed over this period taking into account natural and man-induced hydrological variations. Oxygenation of the fluvial sector below Paris has increased considerably owing to improved wastewater treatment, but a large part of the estuary remains completely anoxic during the spring and summer months. Nitrogen input to surface waters from urban sources has remained essentially constant while diffuse inputs from agricultural soils have increased 5-fold as a result of more intensive agricultural practices as well as the loss of retention capacity in riparian zones. Phosphorus inputs from domestic and industrial sources increased 3-fold from 1950 to 1980, but have decreased gradually in recent years. The generally high level of phosphorus contamination has favored strong algal development in all large tributaries of the Seine River upstream of paris since the 1960s. Silica inputs, originating mainly from the weathering of rocks, fluctuate widely depending on hydrology. In-stream retention of silica, linked to diatom blooms, has increased but remains limited. These changes have induced several shifts in the nutrient limitation conditions of the Seine Bight.  相似文献   

11.
12.
Sediment transport and trapping in the Hudson River estuary   总被引:3,自引:0,他引:3  
The Hudson River estuary has a pronounced turbidity maximum zone, in which rapid, short-term deposition of sediment occurs during and following the spring freshet. Water-column measurements of currents and suspended sediment were performed during the spring of 1999 to determine the rate and mechanisms of sediment transport and trapping in the estuary. The net convergence of sediment in the lower estuary was approximately 300,000 tons, consistent with an estimate based on sediment cores. The major input of sediment from the watershed occurred during the spring freshet, as expected. Unexpected, however, was that an even larger quantity of sediment was transported landward into the estuary during the 3-mo observation period. The landward movement was largely accomplished by tidal pumping (i.e., the correlation between concentration and velocity at tidal frequencies) during spring tides, when the concentrations were 5 to 10 times higher than during neap tides. The landward flux is not consistent with the long-term sediment budget, which requires a seaward flux at the mouth to account for the excess input from the watershed relative to net accumulation. The anomalous, landward transport in 1999 occurred in part because the freshet was relatively weak, and the freshet occurred during neapetides when sediment resuspension was minimal. An extreme freshet occurred during 1998, which may have provided a repository of sediment just seaward of the mouth that re-entered the estuary in 1999. The amplitude of the spring freshet and its timing with respect to the spring-neap cycle cause large interannual variations in estuarine sediment flux. These variations can result in the remobilization of previously deposited sediment, the mass of which may exceed the annual inputs from the watershed.  相似文献   

13.
14.
珠江网河水沙分配变化及其对伶仃洋水沙场的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用二维ECOMSED模型对径流来水来沙变化前后的1978年和1999年伶仃洋洪水期水动力场和悬沙场进行模拟,结果表明:伶仃洋水动力场整体增强,但不同地貌单元水动力变化具有明显差异.分流比变化后洪水期伶仃洋西槽、东槽和中滩水动力增强,涨潮和落潮流速普遍增大0.1m/s;西部各口门区和西滩涨潮流势减弱,径流优势更加明显,但西滩三个口门水道及滩面潮沟落潮流速增大约0.1 m/s;东滩水动力特征变化不大.悬沙浓度亦整体升高,平均增加了0.02~0.05 kg/m3,悬沙高值区范围扩大,0.10 kg/m3等值线由西槽西侧明显向东推进到沿东槽南北向分布,径流来沙的影响范围东扩.  相似文献   

15.
Stratification and bottom-water hypoxia in the Pamlico River estuary   总被引:1,自引:0,他引:1  
Relationships among bottom-water dissolved oxygen (DO), vertical stratification, and the factors responsible for stratification-destratification in this shallow, low tidal-energy estuary were studied using a 15-yr set of biweekly measurements, along with some recent continuous-monitoring data. Hypoxia develops only when there is both vertical water-column stratification and warm water temperature (>15°C). In July, 75% of the DO readings were <5 mg 1?1, and one-third were <1 mg 1?1. Severe hypoxia occurs more frequently in the upper half of the estuary than near the mouth. Both the time series data and correlation analysis results indicate that stratification events and DO levels are tightly coupled with variations in freshwater discharge and wind stress. Stratification can form or disappear in a matter of hours, and episodes lasting from one to several days seem to be common. Estimated summertime respiration rates in the water and sediments are sufficient to produce hypoxia if the water is mixed only every 6–12 d. There has been no trend toward lower bottom water DO in the Pamlico River Estuary over the past 15 yr. *** DIRECT SUPPORT *** A01BY059 00002  相似文献   

16.
美国流域保护修复的研究与实践开始较早,并在密西西比河的修复与治理上取得了良好成效,对我国流域生态保护修复工作具有一定借鉴意义。介绍了密西西比河的管理模式,并对美国在密西西比河开展的具有代表性的长期生态监测及修复管理工作进行了总结,总结了对我国流域生态保护修复工作的7点启示: ①建立和完善流域生态系统监测与评价指标体系; ②建立流域综合监测网络,进行全流域持续监测; ③建设流域生态信息平台,加强数据共享; ④以流域为单元开展生态状况调查和评估; ⑤建立和完善监测、评估、规划、实施循环体系; ⑥提升对流域生态系统的科学认知; ⑦加强流域协调治理,创新我国流域生态保护修复管理体系。旨在为我国广泛开展流域保护修复工作提供一个覆盖河源头至河口的流域监测与修复管理案例。  相似文献   

17.

红河曾经在古新世—始新世晚期发源于青藏高原内部,大约渐新世开始其流域面积逐渐缩小。自渐新世至今,青藏高原东南缘发育了一系列大规模走滑断裂。走滑断裂能够影响河流的流向、坡度以及河道形态等。在这些走滑断裂影响下,红河的流域面积是否会发生规律性的变化?本文以南盘江和红河流域分水岭为研究对象,探究红河在红河断裂、建水断裂及文麻断裂等走滑断裂的影响下,其分水岭的迁移特征。本文利用90 m分辨率的DEM提取了红河、南盘江的33条子流域,通过计算获得面积高程积分(HI)、谷底宽高比(VF)、河流陡峭指数(Ksn)和chi(χ)值4个地貌参数,结合野外调查揭示研究区构造活动性差异及分水岭的变化规律。结果显示,研究区分水岭呈分段性变化:龙树村—店房村段向南盘江迁移;店房村—腊梅村段向红河迁移,HI值、VF值及Ksn值三者所得结果与chi(χ)值结果对马鹿山—龙树村段存在不同认识。从整体上看,红河在逐渐失去其流域面积。非构造因素(降雨和岩性)不是控制研究区分水岭迁移的主要因素,研究区分水岭迁移主要受研究区内红河断裂、建水断裂、曲江断裂、文麻断裂及小江断裂南段的构造活动性强弱影响。

  相似文献   

18.
Most populations of estuarine-dependent, early life stages of marine fishes are open. As a result, it has been difficult to apply conventional population models to most systems. In this study, a marked population of young-of-year spot (Leiostomus xanthurus) was released into a polyhaline tidal creek within the Guinea Marshes of the York River estuary, Virginia. Over a 90-day study period, 221 marked fishes were recaptured. Plots of the ratio of marked to unmarked individuals (mi/ni) in subsequent samples indicated that the population was resident in the creek for up to 162 days with the average individual present for 81 days. When this population turnover rate was compared to the total population decay rate (marked plus unmarked fish), it was determined that exchange between habitats (immigration/emigration) accounted for about 36.4% of the total decay rate, with the remainder attributed to natural mortality. By correcting the overall disappearance rate for population turnover due to emigration and using this adjusted value as a measure of instantaneous mortality (z), the estimated production (over 90 days) in this population was 23,630 cal (98,870 J) per m2. This figure agrees with a previously derived estimate for spot in the Guinea marshes and is nearly two orders of magnitude higher than other reported values for this species for all size classes over the entire growing season.  相似文献   

19.
Dissolved load of the Loire River: chemical and isotopic characterization   总被引:5,自引:0,他引:5  
The Loire River, with one of the largest watersheds in France, has been monitored just outside the city of Orleans since 1994. Physico-chemical parameters and major and trace elements were measured between 2-day and 1-week intervals according to the river flow. The sampling site represents 34% of the total Loire watershed with 76% silicate rocks and 24% carbonate rocks.

Elements are transported mainly in the dissolved phase with the ratio of total dissolved salts (TDS) to suspended matter (SM) ranging between 1.6 and 17.4. Chemical weathering of rocks and soils are thus the dominant mechanisms in the Loire waters composition. The highest TDS/SM ratios are due to dissolved anthropogenic inputs. The database shows no link between NO3 content and river flow. The Na+, K+, Mg2+, SO42−, and Cl concentrations are seen to decrease with increasing discharge, in agreement with a mixing process involving at least two components: the first component (during low flow) is concentrated and may be related with input from the groundwater and sewage station water, the second component (during high flow) is more dilute and is in agreement with bedrock weathering and rainwater inputs. A geochemical behaviour pattern is also observed for HCO3 and Ca2+ species, their concentrations increase with increasing discharge up to 300 m3/s, after which, they decrease with increasing discharge. The Sr isotopic composition of the dissolved load is controlled by at least five components — a series of natural components represented by (a) waters draining the silicate and carbonate bedrock, (b) groundwater, and (c) rainwaters, and two kinds of anthropogenic components.

The aim of this study is to describe the mixing model in order to estimate the contribution of each component. Finally, specific export rates in the upper Loire watershed were evaluated close to 12 t year−1 km−2 for the silicate rate and 47 t year−1 km−2 for the carbonate rate.  相似文献   


20.
One of the most serious threats to freshwater and marine ecosystems is high rates of anthropogenic nutrient loading, particularly nitrogen (N) and phophorus (P). One of the major freshwater sources of nutrients to Long Island Sound (LIS) is the Housatonic River (HR). Current management plans that call for reducing N inputs without reducing P inputs may change the N: P ratio in the water column and the pattern of algal nutrient limitation and species composition in the tidal portion of the river. To assess the current pattern of algal nutrient limitation in the HR estuary, nutrient bioassays were conducted in spring, summer, and fall at 5 sites throughout the tidal portion and adjacent LIS. Diatoms were a dominant taxon at all sites throughout the sampling period. Other seasonally important taxa include cyanobacteria, cryptophytes, and euglenoids. Phytoplankton in LIS were always strongly N limited and were co-limited by P in spring. During low flow (summer), phytoplankton in the lower HR estuary were N limited. Phytoplankton in the middle reaches showed no evidence of N or P limitation and were likely limited by other factors. In spring, phytoplankton in the upper HR estuary were P limited. Periods of N or P limitation were better correlated with periods of lower concentrations of nitrate or phosphate than with differences in N: P ratio. These results suggest that decreases in N concentration could increase the prevalence of N limitation throughout the estuary that in turn may reduce phytoplankton biomass and alter species composition of the phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号