首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical investigation has been made on the Dust ion-acoustic (DIA) Gardner solitons (GSs) and double layers (DLs) in electronegative plasma consisting of inertial positive and negative ions, super-thermal (kappa distributed) electrons, and negatively charged static dust. The standard reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and standard Gardner equations, which admits solitary waves (SWs) and DLs solutions. It have been found that GSs and DLs exist for α around its critical value α c , where α c is the value of α corresponding to the vanishing of the nonlinear coefficient of the K-dV equation. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. The basic features of DIA SWs and DLs are analyzed and it has been found that the polarity, speed, height, thickness of such DIA SWs and DLs structures, are significantly modified due to the presence of two types of ions and spectral index (κ) of super-thermal electrons. It has also been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV solitons. The relevance of our results to different interstellar space plasma situations are discussed.  相似文献   

2.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

3.
Gardner solitons (GSs) and double layers (DLs) of dust ion acoustic (DIA) waves in an electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust) are studied. The reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV, and standard Gardner equations, which admits solitary wave and DLs solutions for σ around its critical value σ c (where σ c is the value of σ corresponding to the vanishing of the nonlinear coefficient of the K-dV equation). The parametric regimes for the existence of the GSs and DLs, are obtained. The basic features of DIA GSs and DLs (associated with negative structure only) are analyzed. It has been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV (mixed K-dV) solitons. The implications of our results to different space and laboratory plasma situations are discussed.  相似文献   

4.
Small amplitude dust-acoustic solitary waves in an unmagnetized dusty plasma consisting of electrons and two temperature ions obeying the q-nonextensive distribution are investigated. Employing reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. From the solitonic solutions of KdV equation, the influence of nonextensivity of electrons as well as ions and dust concentration on the amplitude and width of dust-acoustic solitary waves has been studied. It is observed that both positive and negative potential dust acoustic solitary waves occur in this case. The modified KdV (mKdV) equation is derived in order to examine the solitonic solutions for the critical plasma parameters for which KdV theory fails. The parametric regimes for the existence of mKdV solitons and double layers (DLs) have also been determined. Positive potential double layers are found to occur in the present study.  相似文献   

5.
Dust-ion-acoustic (DIA) waves in an unmagnetized dusty plasma system consisting of inertial ions, negatively charged immobile dust, and superthermal (kappa distributed) electrons with two distinct temperatures are investigated both numerically and analytically by deriving Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with its double layers (DLs) solutions using the reductive perturbation technique. The basic features of the DIA Gardner solitons (GSs) as well as DLs are studied, and an analytical comparison among K-dV, mK-dV, and GSs are also observed. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. It is observed that superthermal electrons with two distinct temperatures significantly affect on the basic properties of the DIA solitary waves and DLs; and depending on the parameter μ c (the critical value of relative electron number density μ e1), the DIA K-dV and Gardner solitons exhibit both compressive and rarefactive structures, whereas the mK-dV solitons support only compressive structures and DLs support only the rarefactive structures. The present investigation can be very effective for understanding and studying various astrophysical plasma environments (viz. Saturn magnetosphere, pulsar magnetosphere, etc.).  相似文献   

6.
The Gardner equation is derived and numerically solved. This equation shows the existence of compressive and rarefactive dust-acoustic (DA) solitons with two-temperature ions beyond the K-dV (Korteweg–de Vries) limit. These may be referred to as DA Gardner solitons (DA-GSs). Here we deal with a dusty plasma, composed of negatively charged cold mobile dust fluids, inertialess Boltzmann electrons and ions with two distinctive temperatures. The basic features of the compressive and rarefactive DA solitons are identified. These solitons are found to exist beyond the K-dV limit, i.e. they exist for μ i1μ c. Here μ i1=n i10/Z d n d0, Z d is the number of electrons residing upon the dust grain surface, and n i0 (n d0) is the lower temperature ion (dust) number density at equilibrium. These DA-GSs are completely different from the K-dV solitons, because μ c (the critical value) corresponds to vanishing of the nonlinear coefficient of the K-dV equation, and μ i1μ c corresponds to K-dV solitons, with extremely large amplitude, for which the validity of the reductive perturbation method breaks down. It has been found that, depending on whether the parameter μ i1 is less than or greater than the critical value, the DA-GSs exhibit compression for μ i1>μ c and rarefaction for μ i1<μ c. The basic features of double layers with arbitrary amplitude are also briefly discussed, employing the pseudo-potential approach. The present investigation might be relevant to the electrostatic solitary structures observed in various cosmic dust-laden plasmas, such as supernova shells, Saturn’s F-ring, the ionopause of Halley’s comet, etc.  相似文献   

7.
Compressive solitons of low and high amplitudes are established in this weakly relativistic and magnetized plasma model. The assigned direction of soliton propagation to the direction of the magnetic field, supplemented by the corresponding ion initial streaming speed (v 0) determines the lower limit of the initial electron streaming speed (v 0) in its interval of existence to produce solitons for a given value of the speed of light c. Further, lower limit of c specified by the corresponding energy (or temperature) to yield relativistic compressive solitons is also predicated. Interestingly, the increased initial streaming speed of electrons is found to play less effective role in the steepening growth of amplitudes of compressive solitons due to mode one than those corresponding to the mode two.  相似文献   

8.
Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma consisting of negatively charged mobile dust, nonextensive ions following nonextensive q-distribution and two distinct temperature superthermal electrons following superthermal kappa distribution each, is investigated by employing lower and higher order nonlinear equations, namely the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV) and the Gardner equations. The characteristic features of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two superthermal temperature electrons and ions nonextensivity on the basic characteristics of DA K-dV, mK-dV and Gardner solitons have also been investigated. It has been found that the DA Gardner solitons exhibit either negative or positive potential solitons only for q<q c where, q c is the critical value of the nonextensive parameter q. The possible applications of our results in understanding the localized nonlinear electrostatic structures existing in solar atmosphere, Saturn’s magnetosphere etc. (where the tails of the high energetic particles at different temperatures follow power-law like distribution) are also briefly discussed.  相似文献   

9.
In the present paper we investigate the nonlinear wave structures of electron acoustic waves (EAWs) in an unmagnetized quantum plasma consisting of cold and hot electrons and ions. The one-dimensional quantum hydrodynamic model is used to study the quantum correction of the well known EAWs. Computational investigations have been performed to examine the effects of quantum diffraction and Mach number on nonlinear waves. It is shown that for Mach number M<1, soliton solution exist and for M>1, quasi-periodic and periodic type solution exist. The effects of other several parameters on the properties of EAWs are also discussed.  相似文献   

10.
In the two component relativistic plasmas subject to pressure variation of adiabatic electrons and isothermal ions, both compressive and rarefactive KdV solitons are established in a quite different physical plasma model. It is desirable to define c s in a new way to substantiate the validity of the model under relativistic effects. The corresponding mathematical condition is also determined, which is a new report of this kind. It is also interesting to report that the relativistic rarefactive solitons cease to exist below some critical ion initial streaming speed v i0 for a fixed temperature α and electron streaming speed v e0. Besides, higher initial flux v i0 of ions under constant temperature is observed to generate higher speed v i at the passage of time which causes to increase (in relativistic sense) its mass diminishing thereby the growth of soliton amplitudes.  相似文献   

11.
Properties of dust-ion acoustic solitary waves (DIASWs) in dusty plasmas composed of nonextensive electrons, cold fluid ions and stationary dust particles are investigated. The possibility of soliton formation and the effect of nonextensivity of the electron distribution on the soliton characters are studied using the pseudo-potential method. Regions of parameters in which a solitary wave can be propagated in the plasma is analyzed too. It is found that the solitary excitations strongly depend on the electron-ion density ratio (μ), Mach numbers (M) as well as the nonextensive parameter (q). It is shown that the domain of allowed Mach numbers depends drastically on the plasma parameters and especially on the electron nonextensivity. It is found that beyond a threshold value of the nonextensive parameter (q), dust-ion acoustic solitons are admitted.  相似文献   

12.
In the new investigation of dust-ion acoustic (DIA) waves with negative dust charges and weakly relativistic ions and electrons in the plasma, compressive and rarefactive DIA solitons of interesting characters are established through the Korteweg-de Vries (KdV) equation. Eventually, the amplitudes of the compressive DIA solitons are found to be constant at some critical temperature ratio α c (electron to ion temperature ratio) identifying some critical dust charge Z dc . It is predicted, that the reception of dust charges by the plasma particles at the variation of temperature starts functioning to the growth of compressive soliton’s constant stage of amplitude after the state of critical α c . The identification of critical dust charge (Z dc ) which is found to be very great for solitons of constant amplitudes becomes feasible for very small dust to ion density ratio (σ). But it can be achieved, we observe, due to the relativistic increase in ion-density as in mass, which is also a salient feature of this investigation.  相似文献   

13.
14.
The nonlinear propagation of ion-acoustic waves is studied in an unmagnetized collissionless electronegative plasma, whose constituents are the inertial warm positive/negative ions and q-distributed nonextensive electrons. The latter have strong impact on the linear dispersion relation. However, for nonlinear analysis, a reductive perturbation technique is employed to derive a Korteweg-de Vries (KdV) equation accounting for nonthermal electrons in nonplanar geometries. Numerically, the effects of various plasma parameters, such as, the nonextensive parameter (q), the negative-to-positive ion mass ratio (α), the electron-to-positive ion number density ratio (μ), the positive ion-to-electron temperature ratio (θ i ) and negative ion-to-electron temperature ratio (θ n ), have been examined on the nonplanar compressive/rarefactive fast ion-acoustic solitons (where the wave phase speed is taken as λ>1). The relevance of our findings involving plasma wave excitations should be useful both for space and laboratory plasmas, where two distinct groups of ions besides the electrons, are present.  相似文献   

15.
The nonlinear propagation and interaction of dust acoustic multi-soliton in a four component dusty plasma which consists of negatively and positively charged cold dust fluids, q-nonextensive velocity distributed electrons and ions, have been studied. Applying reductive perturbation technique (RPT), we have derived Korteweged-de Vries (KdV) equation for our model. By using Hirota bilinear method, we have obtained two-soliton and three-soliton solutions of the obtained KdV equation. Phase shifts of two-soliton and three-soliton have been presented. It has been observed that the parameters α 1, α 2, nonextensive parameter q, temperature ratio of ion to electron (σ), and μ play a crucial role in the formation of two-soliton and three-soliton. The implications of our results in understanding the localized nonlinear electrostatic perturbations observed in double-plasma machines, Cometary tails, Jupiter’s magnetosphere etc., where population of q-nonextensive velocity distributed electrons and ions can significantly dominate the wave dynamics, are also briefly discussed.  相似文献   

16.
Propagation of small but finite amplitude ion acoustic solitons and double layers are investigated in electron–positron–ion plasmas in presence of highly negatively charged impurities or dust. The presence of negatively charged dust particulates can result in existence of two critical concentrations of ion–electron density ratio α. One of them α D decides the existence of double layers, whereas the other one α R decides the nature of the solitons and double layers. The system supports both compressive and rarefactive solitons as well as double layers. The parameter regimes of transitions from compressive to rarefactive solitons and double layers are also specified.  相似文献   

17.
Theoretical investigation has been made to study the envelope excitations of ion-acoustic solitons (IAS) in plasma composed of electrons, positrons, ions and dust particles. A nonlinear Schrödinger equation which describes the modulational instability of the IAS is derived by using the multiple scale method. The dispersive and nonlinear coefficients are obtained which depend upon the temperature of the ions, concentration of the positrons, electrons and dust particles. The modulationally stable and unstable regions are studied numerically for a wide range of parameters. It is found that these parameters play significant role in the formation of bright and dark envelope solitons in this plasma system.  相似文献   

18.
Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using \(q\)-nonextensive distribution function for the electrons and assuming ions to be cold \(T_{i}< T_{e}\). It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The \(q\)-nonextensivity parameter \(q\) and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the \(F\)-region ionosphere for illustration.  相似文献   

19.
The behavior of quantum dust ion-acoustic (QDIA) shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied, using a quantum hydrodynamic model (QHD). The effect of dissipation due to the viscosity of ions is taken into account. The propagation of small but finite amplitude QDIA shocks is governed by the Kortoweg-de Vries-Burgers (KdVB) equation. The existence regions of oscillatory and monotonic shocks will depend on the quantum diffraction parameter (H) and dust density (d) as well as dissipation parameter (η 0). The effect of plasma parameters (d,H,η 0), on these structures is investigated. Results indicate that the thickness and height of monotonic shocks; oscillation amplitude of the oscillatory shock wave and it’s wavelength effectively are affected by these parameters. Additionally, the possibility of propagation of both compressive and rarefactive shocks is investigated. It is found that depending on some critical value of dust density (d c ), which is a function of H, compressive and rarefactive shock waves can’t propagate in model plasma. The present theory is applicable to analyze the formation of nonlinear structures at quantum scales in dense astrophysical objects.  相似文献   

20.
The basic features of planar and nonplanar time-dependent dust-ion-acoustic (DIA) solitary waves (SWs) and double layers (DLs) have been studied in an unmagnetized dusty plasma system consisting of positively and negatively charged dust, Boltzmann distributed ions and superthermal electrons (represented by kappa distribution). Using the reductive perturbation technique (RPT) we have derived modified Gardner (MG) equation, which gives information beyond the Korteweg-de Vries (KdV) limits (corresponding to the vanishing of nonlinear coefficient of the KdV equation). It is seen that the properties of nonplanar DIA SWs and DLs are significantly differs as the value of spectral index kappa (κ) changes. The present investigation may have relevance in the study of propagation of DIA waves in space and laboratory plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号