首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study stability formulation of holographic dark energy in Brans-Dicke theory. The model is constrained with observations. The results verifies the cosmic acceleration in near past. With the stability analysis we find that the universe transits from quintessence to phantom state in near future while approaching a stable state.  相似文献   

2.
3.
4.
This paper is aimed to investigate 5D holographic dark energy (HDE) in DGP-Brane cosmology by employing a combination of Sne Ia, BAO and CMB observational data and constraining cosmological parameters. The FRW dynamics for the normal branch (?=+1) solution of induced gravity brane-world model is taken with the assumption that matter in 5D bulk is HDE such that its holographic nature is reproduced effectively in 4D universe. In the HDE model, we used Hubble horizon as IR cutoff instead of future event horizon. This way, while the model predicts current universe acceleration, it also removes the problem of circular reasoning and causality observed in using future event horizon as IR cutoff.  相似文献   

5.
We study the holographic dark energy (HDE) model in generalized Brans-Dicke scenario with a non-minimal coupling between the scalar field and matter Lagrangian namely Chameleon Brans Dicke (CBD) mechanism. In this study we consider the interacting and non-interacting cases for two different cutoffs. The physical quantities of the model such as, equation of state (EoS) parameter, deceleration parameter and the evolution equation of dimensionless parameter of dark energy are obtained. We shall show that this model can describe the dynamical evolution of fraction parameter of dark energy in all epochs. Also we find the EoS parameter can cross the phantom divide line by suitable choices of parameters without any mines kinetic energy term.  相似文献   

6.
We study some holographic dark energy models in chameleonic Brans-Dicke field gravity by taking interaction between the dark energy components in FRW universe. Firstly, we take the holographic dark energy model with Granda-Oliveros cut-off and discuss interacting as well as non-interacting cases. Secondly, we consider the holographic dark energy with both power-law as well as logarithmic corrections using Hubble scale as infrared cut-off in interacting case only. We describe the evolution of some cosmological parameters for these holographic dark energy models. It is concluded that the phantom crossing can be achieved more easily in the presence of chameleonic Brans-Dicke field as compared to simple Brans-Dicke as well as Einstein’s gravity. Also, the deceleration parameter strongly confirms the accelerated expanding behavior of the universe.  相似文献   

7.
We study a holographic dark energy model in the framework of Brans-Dicke (BD) theory with taking into account the interaction between dark matter and holographic dark energy. We use the recent observational data sets, namely SN Ia compressed Joint Light-Analysis (cJLA) compilation, Baryon Acoustic Oscillations (BAO) from BOSS DR12 and the Cosmic Microwave Background (CMB) of Planck 2015. After calculating the evolution of the equation of state as well as the deceleration parameters, we find that with a logarithmic form for the BD scalar field the phantom crossing can be achieved in the late time of cosmic evolution. Unlike the conventional theory of holographic dark energy in standard cosmology (\(\omega_{D}=0\)), our model results in a late time accelerated expansion. It is also shown that the cosmic coincidence problem may be resolved in the proposed model. We execute the statefinder and Om diagnostic tools and demonstrate that interaction term does not play a significant role. Based on the observational data sets used in this paper it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\varOmega_{m}=0.268^{+0.008~+0.010}_{-0.007~-0.009}\), \(\alpha =3.361^{+0.332~+0.483} _{-0.401~-0.522}\), \(\beta =5.560^{+0.541~+0.780}_{-0.510~-0.729}\), \(c=0.777^{+0.023~+0.029}_{-0.017~-0.023}\) and \(b^{2} =0.045\), according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

8.
The work reported in this paper demonstrates the cosmology of f(Q)gravity and the reconstruction of various associated parameters with different versions of hol...  相似文献   

9.
We explore a 5D Brans-Dicke scalar cosmology by conjecturing that the four-dimensional Hubble parameter varies as H = εφs,ε∈ R and s is some unknown power index and that the extra-dimensions compactify as the visible dimensions expand as b(t) ≈ ax(t) ,x ∈ R-. We mainly discuss the case x =-1. For critical values of ε close to unity,it was observed that the acceleration of the universe occurs at redshift close to z = 0.8 which indicates that in our model,accelerated expansion of the universe began only recen...  相似文献   

10.
In this paper, we study an interacting holographic dark energy model in the framework of fractal cosmology. The features of fractal cosmology could pass ultraviolet divergencies and also make a better understanding of the universe in different dimensions. We discuss a fractal FRW universe filled with the dark energy and cold dark matter interacting with each other. It is observed that the Hubble parameter embraces the recent observational range while the deceleration parameter demonstrates an accelerating universe and a behavior similar to \(\Lambda \mbox{CDM}\). Plotting the equation of state shows that it lies in phantom region for interaction mode. We use \(\mathit{Om}\)-diagnostic tool and it shows a phantom behavior of dark energy which is a condition of avoiding the formation of black holes. Finally we execute the StateFinder diagnostic pair and all the trajectories for interacting and non-interacting state of the model meet the fixed point \(\Lambda \mbox{CDM}\) at the start of the evolution. A behavior similar to Chaplygin gas also can be observed in statefinder plane. We find that new holographic dark energy model (NHDE) in fractal cosmology expressed the consistent behavior with recent observational data and can be considered as a model to avoid the formation of black holes in comparison with the main model of NHDE in the simple FRW universe. It has also been observed that for the interaction term varying with matter density, the model generates asymptotic de-Sitter solution. However, if the interaction term varies with energy density, then the model shows Big-Rip singularity. Using our modified CAMB code, we observed that the interacting model suppresses the CMB spectrum at low multipoles \(l<50\) and enhances the acoustic peaks. Based on the observational data sets used in this paper and using Metropolis-Hastings method of MCMC numerical calculation, it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\Omega _{m0}=0.278^{+0.008~+0.010} _{-0.007~-0.009}\), \(H_{0}=69.9^{+0.95~+1.57}_{-0.95~-1.57}\), \(r_{c}=0.08^{+0.02~+0.027}_{-0.002~-0.0027}\), \(\beta =0.496^{+0.005~+0.009} _{-0.005~-0.009}\), \(c= 0.691^{+0.024~+0.039}_{-0.025~-0.037}\) and \(b^{2}=0.035\) according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

11.
12.
In this paper string cosmology has been developed in the presence of Brans-Dicke scalar field coupled to Einstein gravity. Solutions are obtained for both geometric andp-string models and physical situations are discussed.  相似文献   

13.
14.
Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in sr plane compare with original holographic dark energy model.  相似文献   

15.
In a flat Friedmann–Lemaitre–Robertson–Walker background, a scheme of dark matter–dark energy interaction is studied considering a holographic Ricci-like model for the dark energy. Without giving a priori some specific model for the interaction function, we show that this function can experience a change of sign during the cosmic evolution. The parameters involved in the holographic model are adjusted with Supernova data and we obtained results compatible with the observable universe.  相似文献   

16.
We propose in this paper an interacting holographic dark energy (IHDE) model in chameleon–tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the scalar field coupling matter Lagrangian in the model rather than being inserted into the formalism as an external source for the interaction. The correspondence between the tachyon field and the holographic dark energy (HDE) densities allows to reconstruct the tachyon scalar field and its potential in a flat FRW universe. The model can show the accelerated expansion of the universe and satisfies the observational data.  相似文献   

17.
18.
Both dark energy and the thermodynamics on apparent horizon in cosmology have been broadly investigated in recent several years. In order to maintain the continuity equation of the total matter in the universe, a new interacting dark energy in the framework of Brans-Dicke theory is proposed. Considering this new interacting dark energy, an equilibrium thermodynamics in Brans-Dicke theory is constructed successfully. Moreover, this new interacting dark energy can be regarded as arising from the “Holographic Dark Energy” models.  相似文献   

19.
By a rescalation of the scalar field ? of the Jordan-Brans and Dicke cosmology, the general solutions of the Friedmannian ‘vacuum’ Universe are obtained. Only the flat space solution was previously known. Each solution is caracterized by the sign of the second time derivative of the rescaled field ψ≡?R 3 (R being the scale factor of the Robertson-Walker line-element): \(\ddot \psi\) = 0 (flat space), \(\ddot \psi\) < 0 (closed space), and \(\ddot \psi\) > 0 (open space), so that the solutions are mutually exclusive. Of these, the open space one is damped-oscillatory andR attains its absolute minimum, equal to zero, in only one of the two ‘extreme’ cycles. Otherwise,R min remains positive. If the ?-field is dominant near the singularity, these solutions may have physical significance. Also obtained, by the method mentioned above, is the general flat space solution for a ‘dust’ Universe and from it a closed space ‘dust’ solution. Both were found before by different authors, each one using a different method and, therefore, seemed up to now unrelated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号