首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Korteweg-de Vries (KdV) equation for electrostatic ion acoustic wave in a three component plasma containing positive and negative ions along with the nonextensive electrons is derived. Fast and slow ion acoustic modes which propagate with different velocities are excited. The effects of variation of quantities like q (nonextensive parameter), Q (mass ratio of positive to negative ion), μ (electron to positive ion number density ratio), θ i (positive ion to electron temperature ratio) and θ n (negative ion to electron temperature ratio) have been presented for fast and slow ion acoustic modes. Both compressive and rarefactive solitons are observed. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as on nonextensive electron parameter.  相似文献   

3.
Unlike classical studies in which the gravitational instability criterion for astrophysical disks is derived in the framework of traditional kinetics or hydrodynamics, we propose to consider the totality of fluffy dust clusters of various astrophysical objects, in particular, protoplanetary subdisks, as a special type of continuous medium, i.e., fractal medium for which there are points and areas not filled with its components. Within the deformed Tsallis statistics formalism, which is intended to describe the behavior of anomalous systems with strong gravitational interaction and fractal nature of phase space, we derive, on the basis of the modified kinetic equation (with the collision integral in the Bhatnagar-Gross-Krook form), the generalized hydrodynamic Euler equations for a medium with the fractal mass dimension. Considering the linearization of the q-hydrodynamics equations, we investigate the instability of an infinitely homogeneous medium to obtain a simplified version of the modified gravitational instability criterion for an astrophysical disk with fractal structure.  相似文献   

4.
Within the formalism of Tsallis nonextensive statistics designed to describe the behavior of anomalous systems, systems with a strong gravitational interaction between their individual parts and the fractal nature of phase space, we have obtained linearized equations for the oscillations of a rigidly rotating disk by taking into account dissipative effects and give a derivation of the dispersion equation in the WKB approximation. Based on the previously derived modified Navier—Stokes hydrodynamic equations (the so-called equations of q-hydrodynamics), we have analyzed the axisymmetric oscillations of an astrophysical, differentially rotating gas—dust cosmic object and obtained modified Jeans and Toomre gravitational instability criteria for disks with a fractal phase-space structure.  相似文献   

5.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

6.
A parametric survey on the propagation characteristics of the dust ion-acoustic (DIA) shock waves showing the effect of nonextesivity with nonextensive electrons in a dissipative dusty plasma system has been carried out using the reductive perturbation technique. We have considered continuity and momentum equations for inertial ions, q-distributed nonextensive electrons, and stationary charged dust grains, to derive the Burgers equation. It has been found that the basic features of DIA shock waves are significantly modified by the effects of electron nonextensivity and ion kinematic viscosity. Depending on the degree of nonextensivity of electrons, the dust ion-acoustic shock structures exhibit compression and rarefaction. The implications of our results would be useful to understand some astrophysical and cosmological scenarios like stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc., where effects of nonextensivity can play the significant roles.  相似文献   

7.
The properties of propagation of small amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Korteweg-de Vries (KdV) equation with finite amplitude is derived using a reductive perturbation method. From the solitary solutions of KdV equation, the combined effects of nonextensivity and density ratio are studied on characteristics of ion acoustic (IA) solitary waves. Positive as well as negative polarity solitons exist. Since singularity exists for A=0 so we have also derived modified Korteweg de Vries (mKdV) equation to study the solitonic solution for critical values of physical parameters (q,f,σ). The nonextensivity of electrons (via q) and density ratio of electrons and ions (via f) and temperature ratio (σ) significantly influence the characteristics of ion acoustic solitary structures.  相似文献   

8.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

9.
Propagation of nonlinear dust-acoustic waves in a magnetized collisionless plasma having positively, negatively charged dust grains and nonextensive distributed electrons and ions has been investigated. A reductive perturbation method is used to obtain a nonlinear Korteweg-de Vries (KdV) equation describing the model. The dynamics of the modulational instability gives rise to the formation of rogue waves that is described by a nonlinear Schrödinger equation. The dependence of rogue waves profiles on positive and negative charged dust cyclotron frequencies, nonextensive parameters of electrons and ions is investigated numerically. The result of the present investigation may be applicable to some plasma environments, such as cometary tails and upper mesosphere.  相似文献   

10.
Nonlinear saturation of the ion acoustic instability, driven by finite heat conduction in the solar wind, via resonance broadening is considered. The calculations based on the Hartle and Sturrock model show that this process can heat ions faster than the electrons, thereby, leading to the reduction in electron to proton temperature ratio. The difficulty with this process is that it increases the electron temperature above the value predicted by the Hartle and Sturrock model.  相似文献   

11.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion-acoustic (IA) solitary waves in a magnetized electron-positron-ion (e-p-i) plasma. The nonlinear Korteweg-de Vries (KdV) equation is derived by using the reductive perturbation method. The plasma parameters such as, the degree of nonextensivity, obliqueness, positron concentration and temperature ratio are found to significantly affect the solitary waves characteristics. Also, a critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. Our finding contributes to the physics of the nonlinear electrostatic excitation in astrophysical and cosmological scenarios like magnetosphere, polar cups region of pulsars, neutron stars and white dwarfs, etc., where magnetized e-p-i plasma can exist.  相似文献   

12.
Making use of the Sagdeev pseudo-potential approach, we derive the energy like equation for dust-acoustic (DA) solitary waves in a complex plasma having negatively charged cold dust, and electrons/ions featuring the Tsallis distribution. The effects of electron and ion nonextensivity on the DA soliton profile are examined. It is shown that depending on the strength of particle nonextensivity, our plasma model may admit compressive as well as rarefactive DA solitary waves. Our results complement previously published results on this problem.  相似文献   

13.
14.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

15.
In the new investigation of dust-ion acoustic (DIA) waves with negative dust charges and weakly relativistic ions and electrons in the plasma, compressive and rarefactive DIA solitons of interesting characters are established through the Korteweg-de Vries (KdV) equation. Eventually, the amplitudes of the compressive DIA solitons are found to be constant at some critical temperature ratio α c (electron to ion temperature ratio) identifying some critical dust charge Z dc . It is predicted, that the reception of dust charges by the plasma particles at the variation of temperature starts functioning to the growth of compressive soliton’s constant stage of amplitude after the state of critical α c . The identification of critical dust charge (Z dc ) which is found to be very great for solitons of constant amplitudes becomes feasible for very small dust to ion density ratio (σ). But it can be achieved, we observe, due to the relativistic increase in ion-density as in mass, which is also a salient feature of this investigation.  相似文献   

16.
Dust acoustic (DA) shock waves are investigated in a dusty plasma having a high-energy-tail electron distribution. The effects of ion streaming, charge variation and electron deviation from the Maxwellian distribution on the DA shock wave are then considered. It is shown that as the suprathermal character of the plasma is increased, the potential amplitude enhances. It is also found that the ion temperature may be destructive for the formation of DA shock waves. Their strength decreases with increasing ion streaming speed. Our results may be useful in understanding the basic nonlinear features of the DA wave propagation that may occur in space dusty plasmas, especially those including a relative motion between species (comet tails, solar wind streams, etc.).  相似文献   

17.
The head-on collision between two electron-acoustic solitary waves (EASWs) in an unmagnetized plasma is investigated, including a cold electrons fluid, hot electrons, obeying a nonextensive distribution and stationary ions. By using the extended Poincaré-Lighthill–Kuo (PLK) perturbation method, the analytical phase shifts following the head-on collision are derived. The effects of the ratio of the number density of hot electrons to the number density of cold electrons α, and the nonextensive parameter q on the phase shifts are studied. It is found that q and the hot-to-cold electron density ratio significantly modify the phase shifts.  相似文献   

18.
Weak dust ion-acoustic (DIA) double- layers (DLs) in a dusty plasma with nonextensive electrons are addressed. A generalized Korteweg-de Vries equation with a cubic nonlinearity is derived. It is shown that under certain conditions, the effect of electron nonextensivity can be quite important. In particular, it may be noted that due to the net negative dust charge and electron nonextensivity, the present dusty plasma model may admit compressive as well as rarefactive weak DIA-DLS. Considering the wide relevance of nonlinear oscillations in space dusty plasmas, our investigation may be taken as a prerequisite for the understanding of the nonlinear structures observed in the ionosphere and the auroral acceleration regions.  相似文献   

19.
The head-on collision of two ion acoustic solitary waves propagating in opposite directions in a weakly relativistic electron-positron-ion plasma composed of weakly relativistic warm ion fluid and nonextensive electrons, positrons is investigated. Using extended Poincaré-Lighthill-Kuo method, the Korteweg-de Vries equations and the analytical phase shifts after the head-on collision of two solitary waves are derived. The effects of the nonextensive parameter, positron-to-electron density ratio, ion-to-electron temperature ratio, electron-to-positron temperature ratio and relativistic factor on the phase shifts are studied. It is found that these parameters can significantly influence the phase shifts of solitary waves.  相似文献   

20.
The modified Kodomtsev-Petviashvili-Burger (mKP-Burger) and Kodomtsev-Petviashvili-Burger equations are derived in strongly coupled dusty plasmas containing iso-nonthermal ions; Boltzmann distributed electrons and variable dust charge. We use reductive perturbation method and discuss on solitary waves and shock waves solutions of these equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号