首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider generalized teleparallel gravity in the flat FRW universe with a viable power-law f(T) model. We construct its equation of state and deceleration parameters which give accelerated expansion of the universe in quintessence era for the obtained scale factor. Further, we develop correspondence of f(T) model with scalar field models such as, quintessence, tachyon, K-essence and dilaton. The dynamics of scalar field as well as scalar potential of these models indicate the expansion of the universe with acceleration in the f(T) gravity scenario.  相似文献   

2.
The aim of this paper is to study the Gödel type universe in modified f(R, ϕ) theory of gravity, where R stands for Ricci scalar and ϕ be the scalar potential. We investigate the modified field equations by using anisotropic and perfect fluid distributions. In particular, we consider two proposed models with some fixed values of parameters and investigate the exact solutions. The behaviour of energy conditions can be seen by a detailed graphical analysis. Furthermore, Tolman-Oppenheimer-Volkoff equation has been studied for both models in this theory. We have also discussed some exact solutions using perfect fluid. It is concluded that f(R, ϕ) theory of gravity support the phenomenon of cosmic expansion of the universe through Gödel type universe for both models.  相似文献   

3.
Evolution of the universe is discussed in the framework of f(R) theory of gravity. The deceleration parameter is used to interpret various phases of the universe. We investigate the future evolution of the flat FRW universe by using observationally viable f(R) models. A numerical technique is applied to solve the evolution equation in terms of Hubble parameter which is used to explore late time acceleration of the universe. Some novel and interesting results based on the choice of coupling parameters in gravitational action are obtained. We can conclude that the considered f(R) models imply unification of matter dominated epoch with present accelerating phase of the universe.  相似文献   

4.
In this paper, we have constructed the cosmological model of the universe in f(RT) theory of gravity in a Bianchi type \(\mathrm{VI}_h\) universe for the functional f(RT) in the form \(f(R,T)=\mu R+\mu T\), where R and T are respectively Ricci scalar and trace of energy momentum tensor and \(\mu \) is a constant. We have made use of the hyperbolic scale factor to find the physical parameters and metric potentials defined in the space-time. The physical parameters are constrained from different representative values to build up a realistic cosmological model aligned with the observational behaviour. The state finder diagnostic pair is found to be in the acceptable range. The energy conditions of the model are also studied.  相似文献   

5.
In this paper, we study the nonlinear electrodynamics in the framework of f(T) gravity for FRW universe along with dust matter, magnetic and torsion contributions. We evaluate the equation of state and deceleration parameters to explore the accelerated expansion of the universe. The validity of generalized second law of thermodynamics for Hubble and event horizons is also investigated in this scenario. For this purpose, we assume polelike and power-law forms of scale factor and construct f(T) models. The graphical behavior of the cosmological parameters versus smaller values of redshift z represent the accelerated expansion of the universe. It turns out that the generalized second law of thermodynamics holds for all values of z with Hubble and event horizons in polelike scale factor whereas for power-law form, it holds in a specific range of z for both horizons.  相似文献   

6.
In this paper, we discuss energy conditions in modified Gauss-Bonnet gravity for locally rotationally symmetric Bianchi type I universe model with perfect fluid. The matter contents are constructed to discuss the energy conditions bounds. We take two specific f(G) models along with present day values of Hubble, deceleration, jerk and snap parameters. It is found that weak and null energy conditions are satisfied while strong energy conditions are violated for both models which represents the accelerated expansion of the universe.  相似文献   

7.
8.
In this paper, we study the new holographic dark energy model in the framework of modified f(R) Horava-Lifshitz Gravity. We apply correspondence scheme to construct model the in underlying scenario using power-law form of scale factor. To explore accelerated expansion of the universe, some well-known cosmological parameters (equation of state parameter and squared speed of sound) and cosmological planes (ω Λ \(\omega'_{\varLambda}\) and statefinder) are discussed for reconstructed model. It is interesting to conclude that these parameters represent phantom behavior of the universe with stable configuration. also, the cosmological planes show compatible results with recent observations for accelerated expansion of the universe.  相似文献   

9.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

10.
In this study, we consider a flat Friedmann-Robertson-Walker (FRW) universe in the context of Palatini f(R) theory of gravity. Using the dynamical equivalence between f(R) gravity and scalar-tensor theories, we construct a point Lagrangian in the flat FRW spacetime. Applying Noether gauge symmetry approach for this f(R) Lagrangian we find out the form of f(R) and the exact solution for cosmic scale factor. It is shown that the resulting form of f(R) yield a power-law expansion for the scale factor of the universe.  相似文献   

11.
In this paper we compare outcomes of some extended phantom-like cosmologies with each other and also with ΛCDM and ΛDGP. We focus on the variation of the luminosity distances, the age of the universe and the deceleration parameter versus the redshift in these scenarios. In a dynamical system approach, we show that the accelerating phase of the universe in the f(R)-DGP scenario is stable if one consider the curvature fluid as a phantom scalar field in the equivalent scalar-tensor theory, otherwise it is a transient and unstable phenomenon. Up to the parameters values adopted in this paper, the extended F(R,ϕ)-DGP scenario is closer to the ΛCDM scenario than other proposed models. All of these scenarios explain the late-time cosmic speed-up in their normal DGP branches, but the redshift at which transition to the accelerating phase occurs are different: while the ΛDGP model transits to the accelerating phase much earlier, the F(R,ϕ)-DGP model transits to this phase much later than other scenarios. Also, within the parameter spaces adopted in this paper, the age of the universe in the f(R)-DGP model is larger than ΛCDM, but this age in F(G,ϕ)-DGP is smaller than ΛCDM.  相似文献   

12.
We discuss the Bianchi type I model with perfect fluid as matter content in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We obtain exact solutions of the field equations employing the anisotropic feature of spacetime for two expansion laws namely exponential and power expansions. The physical and kinematical quantities are examined for both cases in future evolution of the universe. We also explore the validity of null energy condition and conclude that our solutions are consistent with the current observations.  相似文献   

13.
The paper deals with a spatially homogeneous and anisotropic universe filled with perfect fluid and dark energy components. We consider the f(R,T) theory according to holographic and new agegraphic dark energy in the Bianchi type I universe. In this study, we concentrate on two particular models of f(R,T) gravity namely, R+2f(T) and f(R)+λT. We conclude that the derived f(R,T) models can represent phantom or quintessence regimes of the universe.  相似文献   

14.
We try to study the corresponding relation between f(T) gravity and holographic dark energy (HDE). A kind of energy density from f(T) is introduced which has the same role as HDE density. A f(T) model according to the HDE model is calculated. We find out a torsion scalar T based on the scalar factor is assumed by Capoziello et al. (Phys. Lett. B 639:135, 2006). The effective torsion equation of state, deceleration parameter of the holographic f(T)-gravity model are calculated.  相似文献   

15.
16.
17.
We study the validity of the generalized second law (GSL) of gravitational thermodynamics in a non-flat FRW universe containing the interacting in f(T) gravity. We consider that the boundary of the universe to be confined by the dynamical apparent horizon in FRW universe. In general, we discuss the effective equation of state, deceleration parameter and GLS in this framewok. Also, we find that the interacting-term Q modifies these quantities and in particular, the evolution of the total entropy, results in an increases on the GLS of thermodynamic, by a factor $4\pi R_{A}^{3} Q/3$ . By using a viable f(T) gravity with an exponential dependence on the torsion, we develop a model where the interaction term is related to the total energy density of matter. Here, we find that a crossing of phantom divide line is possible for the interacting-f(T) model.  相似文献   

18.
19.
Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the early universe during the pre Big Bang Nucleosynthesis (BBN) era. When the expansion rate is enhanced with respect to the standard case, thermal relics typically decouple with larger relic abundances. In this paper, we study the dynamical evolution of an f(R) model of gravity in a homogeneous and anisotropic background which is given by a Bianchi type-I model of the universe filled with dark matter, which is described by a perfect fluid with a barotropic equation of state. As an example of a consistent analysis of modified gravity, we apply the formalism to a simple background solution of R+βR n gravity. Our analysis shows that f(R) cosmology allows dark matter masses lesser than 100 GeV, in the regime ρ c ?ρ m . We finally discuss how these limits apply to some specific realizations of standard cosmologies: an f(R) gravity model, Einstein frame model.  相似文献   

20.
It is well known that the universe is undergoing a phase of accelerated expansion. Plenty of models have already been created with the purpose of describing what causes this non-expected cosmic feature. Among them, one could quote the extradimensional and the f(R,T) gravity models. In this work, in the scope of unifying Kaluza-Klein extradimensional model with f(R,T) gravity, cosmological solutions for density and pressure of the universe are obtained from the induced matter model application. Particular solutions for vacuum quantum energy and radiation are also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号