首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we discuss known discrepancies between theoretically derived and empirically measured relations between the radio surface brightness Σ and the diameter D of supernova remnants (SNRs): these relations are commonly known as the ΣD relations. We argue that these discrepancies may be at least partially explained by taking into account thermal emission at radio frequencies from SNRs at particular evolutionary stages and located in particular environments. The major contributions of this paper may be summarized as follows: (i) we consider thermal emission at radio frequencies from SNRs in the following scenarios: a relatively young SNR evolving in a dense molecular cloud environment (n  100–1000 cm−3) and an extremely evolved SNR expanding in a dense warm medium (n  1–10 cm−3). Both of these SNRs are assumed to be in the adiabatic phase of evolution. We develop models of the radio emission from both of these types of SNRs and each of these models demonstrate that through the thermal bremsstrahlung process significant thermal emission at radio frequencies is expected from both types of SNR. Based on a literature search, we claim that thermal absorption or emission at radio frequencies has been detected for one evolved Galactic SNR and four young Galactic SNRs with similar properties to our modelled evolved and young SNRs. (ii) We construct artificial radio spectra for both of these two types of SNRs: in particular, we discuss our simulated spectrum for the evolved Galactic SNR OA 184. By including thermal emission in our simulated spectra, we obtain different slopes in ΣD relations: these new slopes are in closer agreement to empirically obtained relations than the theoretically derived relations which do not take thermal emission into account. (iii) Lastly, we present an additional modification to the theoretical ΣD relation for SNRs in the adiabatic expansion phase. This modification is based on the convolution of the synchrotron emissivity with the emissivity derived in this paper for thermal bremsstrahlung emission from an ionized gas cloud (that is, a theoretical construct of an SNR).  相似文献   

2.
In this article we use 1420 MHz data to demonstrate the likely reality of Galactic radio Loops V and VI. We further estimate distances and spectral indices for both these and the four main radio loops. In the cases of Loops I–IV, radio spectral indices are calculated from the mean brightnesses at 1420 and 820/404 MHz. The spectral indices of Loops V and VI are obtained from TT plots between 1420 and 408 MHz. Using the supernova remnant (SNR) hypothesis for the origin of radio loops, distances are calculated from the surface brightnesses and the angular diameters at 1420 MHz. We also study how results for brightnesses and distances of radio loops agree with current theories of SNR evolution. For this purpose, the ambient density and initial explosion energy of the loops are discussed. We also discuss applications of different Σ–D relations. The results obtained confirm a non‐thermal origin and nearby locations for the Galactic radio loops. Therefore, we have indications that they are very old SNRs that evolve in low ambient densities, with high initial explosion energies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The properties of OH megamaser galaxies in the radio continuum are discussed. Many radio sources in OH megamaser galaxies exhibit relatively flat (α ≥ −0.5) radio spectra between frequencies of 1.49 and 8.44 GHz along with high brightness temperatures (Tb ≥ 104 K). In these galaxies the line and radio continuum fluxes are not correlated. The continuum radio emission of OH megamasers is predominantly nonthermal and is associated either with an active nucleus or with compact star formation. The thermal component of the radio emission from these galaxies can be neglected. The observed flat radio spectra and high brightness temperatures imply the existence of an active galactic nucleus, although some megamasers may be associated with compact star formation.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 281–290 (May 2005).  相似文献   

4.
In this paper, the average brightness temperatures and surface brightnesses at 1420, 820 and 408 MHz of the six main Galactic radio-continuum loops are derived, as are their radio spectral indices. The temperatures and surface brightnesses of the radio loops are computed using data taken from radio-continuum surveys at 1420, 820 and 408 MHz. We have demonstrated the reality of Loops V and VI and present diagrams of their spectra for the first time. We derived the radio spectral indices of Galactic radio loops from radio surveys at three frequencies (1420, 820 and 408 MHz) and confirm them to be non-thermal sources. Diameters and distances of Loops I–VI were also calculated. The results obtained are in good agreement with current theories of supernova remnant (SNR) evolution and suggest that radio loops may have a SNR origin.  相似文献   

5.
The Parkes–MIT–NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz (λ=6 cm). We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to δ=−65°) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to δ=+64°) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the currently 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. Direct comparison of our new fluxes with independent literature values gives excellent overall agreement. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5 to 9 Jy, a slight decline and a further flat distribution from 9 to 20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious ΣD (radio surface brightness–SNRs diameter) relation to determine a new power law index for a sub-sample of shell type SNRs which yields β=−2.2±0.6. This new evaluation of the ΣD relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7–11 kpc with most restricted to ±100 pc Galactic scale height.  相似文献   

6.
Arcminute-resolution radio continuum images at 408 and 1420 MHz from the Canadian Galactic Plane Survey (CGPS) have been used to re-examine radio sources listed in the Kallas & Reich catalogue. This catalogue is of particular interest to Galactic studies as it lists both extended and compact radio sources found in the second Galactic quadrant. We have determined the nature (extended versus compact, Galactic versus extragalactic) of all of these bright radio sources. A number of large H  ii regions with no optical counterparts are highlighted along with a sample of large radio galaxies. Many sources previously thought to be extended Galactic objects are shown to be point sources. A sample of point sources with flat or rising spectra between 408 and 1420 MHz has been compiled, and within this sample likely Gigahertz Peaked Spectrum sources have been identified.  相似文献   

7.
We study cosmic-ray acceleration in young Type Ia Supernova Remnants (SNRs) by means of test-particle diffusive shock acceleration theory and 1-D hydrodynamical simulations of their evolution. In addition to acceleration at the forward shock, we explore the particle acceleration at the reverse shock in the presence of a possible substantial magnetic field, and consequently the impact of this acceleration on the particle spectra in the remnant. We investigate the time evolution of the spectra for various time-dependent profiles of the magnetic field in the shocked region of the remnant. We test a possible influence on particle spectra of the Alfvénic drift of scattering centers in the precursor regions of the shocks. In addition, we study the radiation spectra and morphology in a broad band from radio to gamma-rays. It is demonstrated that the reverse shock contribution to the cosmic-ray particle population of young Type Ia SNRs may be significant, modifying the spatial distribution of particles and noticeably affecting the volume-integrated particle spectra in young SNRs. In particular spectral structures may arise in test-particle calculations that are often discussed as signatures of non-linear cosmic-ray modification of shocks. Therefore, the spectrum and morphology of emission, and their time evolution, differ from pure forward-shock solutions.  相似文献   

8.
We analyze the angular structure of the 21-cm interstellar neutral hydrogen emission at six and seven declinations in the northern (published previously) and southern polar caps of the Galaxy (Galactic latitudes from ?40° to ?90°), respectively, with an extent of 90° in right ascension. The RATAN-600 radio telescope has a beam width averaged over these regions of 2.′0×30′. One-dimensional power spectra for the angular distribution of interstellar neutral hydrogen emission were computed in each 6.3-km s?1-wide spectral channel by using the standard Fast Fourier Transform (FFT) code and were smoothed over 1h in right ascension. The Galactic latitude dependence of the mean parameters for the sky distribution of H I line emission at high latitudes was found to correspond to the distribution of gas in the form of a flat layer only in the northern region, while in the southern cap, the gas distribution is much less regular. In addition, the mean H I radial velocities are negative everywhere (?3.7±3.0 km s?1 in the north and ?6.0±2.4 km s?1 in the south). The power spectra of the angular fluctuations in the range of angular periods from 10′ to 6° appear as power laws. However, the spectral indices change greatly over the sky: from ?3 to ?1.2; on average, as the Galactic latitude increases and the H I column density decreases, the fluctuation spectrum of the interstellar gas emission becomes flatter. In the northern polar region, this behavior is much more pronounced, which probably stems from the fact that the gas column density in the south is generally a factor of 2 or 3 higher than that in the north. Therefore, the spectra are, on average, also steeper in the south, but the dependence on Galactic latitude is weaker. Using simulations, we show that the observed power-law spectrum of the H I emission distribution can be obtained in terms of not only a turbulent, but also a cloud model of interstellar gas if we use our previous spectra of the diameters and masses of H I clouds.  相似文献   

9.
We present the first tests of a new method, the correlated component analysis (CCA) based on second-order statistics, to estimate the mixing matrix, a key ingredient to separate astrophysical foregrounds superimposed to the Cosmic Microwave Background (CMB). In the present application, the mixing matrix is parametrized in terms of the spectral indices of Galactic synchrotron and thermal dust emissions, while the free–free spectral index is prescribed by basic physics, and is thus assumed to be known. We consider simulated observations of the microwave sky with angular resolution and white stationary noise at the nominal levels for the Planck satellite, and realistic foreground emissions, with a position-dependent synchrotron spectral index. We work with two sets of Planck frequency channels: the low-frequency set, from 30 to 143 GHz, complemented with the Haslam 408 MHz map, and the high-frequency set, from 217 to 545 GHz. The concentration of intense free–free emission on the Galactic plane introduces a steep dependence of the spectral index of the global Galactic emission with Galactic latitude, close to the Galactic equator. This feature makes difficult for the CCA to recover the synchrotron spectral index in this region, given the limited angular resolution of Planck , especially at low frequencies. A cut of a narrow strip around the Galactic equator  (| b | < 3°)  , however, allows us to overcome this problem. We show that, once this strip is removed, the CCA allows an effective foreground subtraction, with residual uncertainties inducing a minor contribution to errors on the recovered CMB power spectrum.  相似文献   

10.
We present an analysis of the thin layer of Galactic warm ionized gas at an angular resolution ∼10 arcmin. This is carried out using radio continuum data at 1.4, 2.7 and 5 GHz in the coordinate region     . For this purpose, we evaluate the zero level of the 2.7- and 5-GHz surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero-level corrections are   T zero(2.7 GHz) = 0.15 ± 0.06 K  and   T zero(5 GHz) = 0.1 ± 0.05 K  . We separate the thermal (free–free) and non-thermal (synchrotron) component by means of a spectral analysis performed adopting an antenna temperature spectral index −2.1 for the free–free emission, a realistic spatial distribution of indices for the synchrotron radiation and by fitting, pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for  | b | = 0°  , the fraction of thermal emission reaches a maximum value of 82 per cent, while at 1.4 GHz, the corresponding value is 68 per cent. In addition, for the thermal emission, the analysis indicates a dominant contribution of the diffuse component relative to the source component associated with discrete H  ii regions.  相似文献   

11.
This is the initial paper in a series presenting the first optical detections and subsequent follow-up spectroscopy of known southern Galactic supernova remnants (SNRs) previously discovered in the radio. These new detections come from the Anglo-Australian Observatory (AAO)/United Kingdom Schmidt Telescope Hα survey of the southern Galactic plane which has opened up fresh opportunities to study Galactic remnants. Here, we present the first optical imaging and follow-up spectra of Galactic SNR G279.0+1.1 where a series of 14 small-scale fragmented groups of Hα filaments have been discovered in a     area centred on G279.0+1.1. Individually they are somewhat inconspicuous but collectively they are completely enclosed within the overall radio contours of this known SNR. Three of these filamentary groupings are particularly prominent and optical spectra have been obtained across two of them. Their morphological structure and spectral characteristics are typical of optically detected SNR filaments. A very strong [S  ii ] emission relative to Hα has been detected with  [S  ii ]/Hα > 0.7  and 1.1, confirming strong, shock-heated emission. This is sufficient to classify these filaments in the likely SNR domain and therefore indicating a direct connection with the radio remnant. Other typical SNR emission lines such as [O  ii ] at 3727 Å, Hβ, [O  iii ] at 4959 and 5007 Å, Hα and [N  ii ] at 6548 and 6584 Å were also detected, lending strong support to an SNR origin of these optical filaments. The value and insights that these optical data can provide for known remnants are discussed along with their relevance to the Galactic nitrogen abundance. A serendipitous discovery of an adjacent H  ii region is also briefly described.  相似文献   

12.
This paper represents the updated empirical Galactic andextragalactic Σ-D relations (relations between the surface brightness Σ and the diameter D) for supernova remnants(SNRs), with checking the connection of the main Galactic radio loops (Loop I, II, III and IV) with these relations. We present results which suggest, once again, that the radio loops may have an SNR origin. The updated relations for old SNRs have been measured to have slopes, β ≈ 2 in log-log space. The best Σ-D relations for M31 and M33 galaxies were derived and these relations are shown to be flatter (β ≲2) than those for Galactic SNRs alone. A Σ-D relation with168 reliable calibrators (both Galactic and extragalactic) is derived. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Many quasi-simultaneous optical observations of 17 blazars are obtained from previous papers published over the last 19 years in order to investigate the spectral slope variability and understand the radiation mechanism of blazars. The long-period dereddened optical spectral slopes are calculated. We analyse the average spectral slope distribution, which suggests that the spectra of flat spectrum radio quasars (FSRQs) and high energy peaked BL Lac objects (HBLs) are probably deformed by other emission components. The average spectral slopes of low energy peaked BL Lac objects(LBLs), which scatter around 1.5, show a good accordance with the synchrotron self-Compton (SSC) loss-dominated model. We present and discuss the variability between the spectral slope and optical luminosity. The spectra of all HBLs and LBLs get flatter when they turn brighter, while for FSRQs this trend does not exist or may even be reversed. This phenomenon may imply that there is a thermal contribution to the optical spectrum for FSRQs. For the FSRQ 1156+295, there is a hint that the slope gets flatter at both the brightest and faintest states. Our result shows that three subclasses locate in different regions in the pattern of slope variability indicator versus average spectral slope. The relativistic jet mechanism is supported by the significant correlation between the optical Doppler factor and the average spectral slope.  相似文献   

14.
Since supernova remnants (SNRs) are believed to be the primary sources of Galactic cosmic rays (CRs), their distribution in galaxies is an important basis for modelling and understanding the distribution of the CRs and their γ-ray spectrum. We analysed the radial surface density of X-ray and radio selected SNRs in the Large Magellanic Cloud (LMC) and M 33. Both in X-rays and in radio, the surface densities of the SNRs are in excellent agreement in both galaxies, showing an exponential decay in radius. The results were compared to the SNR distribution in the spiral galaxies M 31 and NGC 6946 as well. The radial scale length of the distribution is $\frac{1} {4} $ ? $\frac{1} {3} $ of the radius of the galaxies, fully consistent with values derived for the Milky Way, the LMC, and M 33. Therefore, not only the radio SNRs, but also the X-ray detected SNR sample can be interpreted to be representative for the CR sources within a galaxy.  相似文献   

15.
Fluctuations in the Galactic synchrotron emission can be traced by the angular power spectrum of radio maps at low multipoles. At frequencies below few GHz, large-scale anisotropies are mainly induced by magnetic field turbulence, since non-thermal electrons radiating at these frequencies are uniformly distributed over the scales of magnetic field inhomogeneities. By performing an analysis of five radio maps, we extract constraints on turbulence spectral index and halo scale. Results favour a power spectrum significantly flatter than for 3D Kolmogorov-like turbulence, and a thin halo. This can be interpreted as an indication supporting non-conventional models of propagation of cosmic-ray particles in the Galaxy, or as a suggestion of a spectral-index break in the observed magnetic turbulence power spectrum.  相似文献   

16.
This paper is dedicated to the identification of decameter-wave sources of the UTR catalog within declination interval 30°< δ <40°. UTR sources are cross-identified with CATS database catalogs within 40′ × 40′ error boxes. The sources are deblended using the data on the coordinates of the objects and the behavior of their continuum radio spectra. The spectra of 875 sources are derived and fitted by standard analytical functions. Of these sources, 221 objects have straight-line spectra with spectral indices α < ?1.0. All objects are catalogued and stored in the CATS database.  相似文献   

17.
We present new radio continuum data at four frequencies for the supermassive, peculiar galaxy NGC 1961. These observations allow us to separate the thermal and non-thermal radio emission and to determine the non-thermal spectral index distribution. This spectral index distribution in the galactic disc is unusual: at the maxima of the radio emission the synchrotron spectrum is very steep, indicating aged cosmic ray electrons. Away from the maxima the spectrum is much flatter. The steep spectrum of the synchrotron emission at the maxima indicates that a strong decline of the star formation rate has taken place at these sites. The extended radio emission is a sign of recent cosmic ray acceleration, probably by recent star formation. We suggest that a violent event in the past, most likely a merger or a collision with an intergalactic gas cloud, has caused the various unusual features of the galaxy.  相似文献   

18.
In this paper we estimated the temperatures and brightnesses of the Monoceros radio loop at 1420, 820 and 408 MHz. The linear spectrum is estimated for mean temperatures versus frequency between 1420, 820 and 408 MHz. The spectral index of Monoceros loop is also obtained. The brightness temperatures and surface brightnesses of the loop are computed using data taken from radio‐continuum surveys at the three frequencies. The spectral index of the loop is also obtained from T‐T plots between 1420–820, 1420–408, and 820–408 MHz. The obtained results confirm non‐thermal origin of the Monoceros radio loop (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio galaxies to ∼10 to 100 times fainter than the known population till date. We have extracted ultra-steep spectrum (USS) samples from deep 150 MHz Giant Meter-wave Radio Telescope (GMRT) observations from one of the three well-studied DEEP2 fields to this effect. From correlating these radio sources with respect to the high-frequency catalogues such as VLA, FIRST and NVSS at 1.4 GHz, we find ∼100 steep spectrum (spectral index, α > 1) radio sources, which are good candidates for high red-shift radio galaxies.  相似文献   

20.
A sample of eight small-diameter radio sources has been selected from the Molonglo Galactic Plane Survey (MGPS) as candidates for young Galactic supernova remnants. The sources have been identified in the IRAS and Midcourse Space Experiment infrared data bases and imaged in the H107α radio recombination line (RRL) using the Australia Telescope Compact Array (ATCA). Seven of the sources display high ratios of infrared-to-radio-continuum flux density and/or detectable RRLs and are almost certainly H ii regions. One source (G282.8−1.2) is identified as a possible new young Galactic supernova remnant, based on its relatively weak infrared emission, steep radio spectrum, and possible X-ray emission. The adopted method for distinguishing thermal and non-thermal Galactic radio sources seems promising and could be fruitfully applied to more than 100 small-diameter sources listed in the MGPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号