共查询到20条相似文献,搜索用时 15 毫秒
1.
Paleotopographic controls on loess deposition in the Loess Plateau of China 总被引:3,自引:0,他引:3 下载免费PDF全文
The underlying pre‐existing paleotopography directly influences the loess deposition process and shapes the morphology of current loess landforms. An understanding of the controlling effects of the underlying paleotopography on loess deposition is critical to revealing the mechanism of loess‐landform formation. However, these controlling effects exhibit spatial variation as well as uncertainty, depending on a study's data sources, methodologies and particular research scope. In this study, the geological history of a study area in the Loess Plateau of China that is subject to severe soil erosion is investigated using detailed geological information and digital elevation models (DEMs), and an underlying paleotopographic model of the area is constructed. Based on the models of modern terrain and paleotopography, we introduce a watershed hierarchy method to investigate the spatial variation of the loess‐landform inheritance relationship and reveal the loess deposition process over different scales of drainage. The landform inheritance relationships were characterized using a terrain‐relief change index (TRCI) and a bedrock terrain controllability index (BTCI). The results show that the TRCI appears to have an inverse relationship with increasing research scope, indicating that, compared with the paleotopography of the region, modern terrain has lower topographic relief over the entire area, while it has higher topographic relief in the smaller, local areas. The BTCI strengthens with increasing drainage area, which demonstrates a strong controlling effect over the entire study area, but a weak effect in the smaller, local areas because of the effect of paleotopography on modern terrain. The results provide for an understanding of the spatial variation of loess deposition in relation to paleotopography and contribute to the development of a process‐based loess‐landform evolution model. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
Incision as a result of fluvial erosion is an important process to model when simulating landform evolution. For gullies, it is apparent that coupled with the processes that cause incision there must be a range of processes that stop incision. Once started, rills and gullies will grow infinitely without a reduction in support area and/or being arrested by deposition and armouring. Some of these processes have been well studied under the heading of inter-rill erosion. Other limiting processes are related to the shape of the landform and how downstream deposition areas are linked geomorphically to the upstream gullies. Armouring is also an important process that reduces gully incision and extension, where the gully erodes to bedrock and the resistant base limits further development. Post-mining landscapes are new surfaces with new materials and provide the opportunity to examine gully initiation, extension and stabilization. The work presented here has largely been driven by the mining industry, where there has been a need to assess erosion over hazardous wastes like mine tailings and low-level nuclear waste. We demonstrate the usefulness of computer-based landscape evolution models and the more recent soilscape models (that include both surface and subsurface processes) to understand both fluvial and diffusive processes as well as armouring in a digital elevation model framework (as well as landscape evolution). Landscape evolution models provide insights into complex non-linear systems such as gullies. A key need is that of field data to parameterize and validate the models. It is argued that current models have more capability than field data available for parameterization and importantly the validation of model outputs. 相似文献
3.
An empirical approach was used to examine the morphology and behaviour of gullies along the eastern shoreline of Lake Huron, Canada. Gully and watershed dimensions and percentage vegetation cover of a sample of 44 gullies were measured from aerial photographs between 1930 and 1992. Gullies with larger watersheds had higher area growth rates. Larger gullies continue to expand over time while small gullies are more likely to become stable. Growth rates increased between 1955 and 1978 because of increased snowfall, extreme flow events, the extension of municipal drains, and the use of subsurface drainage. After 1970, efforts to rehabilitate gullies using drain pipes and check dams contributed to a decrease in gully growth rates. © 1997 John Wiley & Sons, Ltd. 相似文献
4.
Gully morphological characteristics in the loess hilly‐gully region based on 3D laser scanning technique 下载免费PDF全文
Gully morphology characteristics can be used effectively to describe the status of gully development. The Chabagou watershed, located in the hilly‐gully region of the Loess Plateau in China, was selected to investigate gully morphological characteristics using a 3D laser scanning technique (LIDAR). Thirty‐one representative gullies located at different watershed locations and gully orders were chosen to quantitatively describe gully morphology and establish empirical equations for estimating gully volume based on gully length and gully surface area. Images and point cloud data for the 31 gullies were collected, and digital elevation models (DEMs) with 10‐cm resolution were generated. ArcGIS 10.1 was then used to extract fundamental gully morphological parameters covering gully length (L), gully width (WT) and gully depth (D), and some derivative morphological parameters, including gully head curvature (C), gully width–depth ratio (w/d), gully bottom‐to‐top width ratio (WB/WT), gully surface area (Ag) and gully volume (Vg). The results indicated that gullies in the upper watershed and the second order were more developed based on their high values of gully head curvature. The potential for gully development increased from the second order to the fourth order. Within the same gully orders, gullies in the lower watershed were more active with more development potential. A method for differentiating between gully head and gully sidewalls based on the gully head curvature value was proposed with a mean relative error of 8.77%. U‐shaped cross‐sections were widely distributed in the upper watershed and upper positions of a gully, while V‐shaped cross‐sections were widely distributed in the lower watershed and lower positions of a gully. V–L and V–Ag empirical equations with acceptable accuracy were established and can be used to estimate gully erosion in the Loess hilly‐gully region. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
5.
Mingming Guo Wenlong Wang Tianchao Wang Wenxin Wang Hongliang Kang 《地球表面变化过程与地形》2020,45(4):1038-1050
Vegetation restoration is identified as an effective approach to control soil erosion and affects soil detachment and resistance to concentrated flow on the Loess Plateau. However, the effects of vegetation restoration at gully heads in loess-tableland remains unclear. This study was performed to investigate the effects of nine vegetation restoration types at gully heads on soil detachment rate (Dr) and soil resistance to concentrated flow (i.e. soil erodibility, Kr and critical shear stress, τc). Undisturbed soil samples were collected from nine vegetation-restored lands and one slope cropland (as the control) and were subjected to a hydraulic flume to obtain Dr values of gully heads under six inflow discharges (0.5–3.5 L s-1). The results showed that the Dr values of nine revegetated gully heads were 77.11% to 95.81% less than that of slope cropland, and the grassland dominated by Cleistogenes caespitosa and the shrubland dominated by Hippophae rhamnoides had a relatively greater decrease in Dr than those of other seven restoration types. The Dr value of nine revegetated gully heads could be better simulated by stream power than by flow velocity and shear stress and was also significantly affected by soil disintegration rate (positively), soil bulk density, saturated hydraulic conductivity, organic matter content, and water-stable aggregate stability (negatively). Additionally, roots with diameters of 0 to 0.5 mm showed a greater effect on Dr than those with larger diameters. Compared to cropland, the nine restored types reduced Kr by 76.26% to 94.26% and improved τc by 1.51 to 4.68 times. The decrease in Kr and the increase in τc were significantly affected by organic matter content, water-stable aggregate, mean weight diameter of aggregate and root mass density. The combination of grass species (Cleistogenes caespitosa) and shrub (Hippophae rhamnoides) could be considered the best vegetation restoration types for improving soil resistance of gully heads to concentrated flow. © 2019 John Wiley & Sons, Ltd. 相似文献
6.
Loess gullies are the most active and changeable landform unit on the Loess Plateau of China. Under the influence of inhomogeneous internal and external forces, various gully morphologies have been identified as specific forms of asymmetrical loess gullies in the northeastern Loess Plateau. Thus, the formation mechanisms of asymmetrical gullies should be examined to better understand the gully evolution processes in this area. In this study, a typical asymmetrical gully area and its geological background in the northeastern Loess Plateau are investigated. Then, the asymmetrical gullies are extracted and ordered under different watershed hierarchies using 5 m horizontal resolution digital elevation models. The asymmetrical gullies are characterized using the gully deviation index and gully asymmetrical coefficient to quantitatively and qualitatively describe the gully formation from the perspective of gully morphology. Subsequently, environmental factors, such as the bedrock, climate, vegetation and interactions with neighbouring watersheds, are combined to achieve an in-depth understanding of the mechanisms of asymmetrical gully formation. The results show that most watersheds shift to the right side of the watershed geometric centre line, thereby forming a specific asymmetrical gully morphology. The phenomenon in which the asymmetrical degree characteristics decrease with the increase in drainage area suggests evident morphological differences on both sides of the main channel on a small scale, and relatively weak morphological differences on both sides of the main channel on a large scale. The degree of loess gully asymmetry appears higher in the area where only the windward slope is covered by loess than in areas where all slopes are covered by loess. The interaction between adjacent watersheds also influences the formation of asymmetrical gullies. These results support the understanding of asymmetrical gully formation in relation to the underlying bedrock structure and gully reorganization, thereby contributing to the development of process-based gully evolution models. 相似文献
7.
Aleksey Sidorchuk 《地球表面变化过程与地形》2006,31(11):1329-1344
8.
Eduardo Luquin Miguel A. Campo-Bescós Rafael Muñoz-Carpena Ronald L. Bingner Richard M. Cruse Henrique G. Momm Robert R. Wells Javier Casalí 《地球表面变化过程与地形》2021,46(10):1909-1925
Ephemeral gully (EG) erosion has an important impact on agricultural soil losses and increases field surface hydrology connectivity and transport of pollutants to nearby water bodies. Watershed models including an EG component are scarce and not yet properly evaluated. The objective of this study is to evaluate the capacity of one such tool, AnnAGNPS, to simulate the evolution of two EG formed in a conservation tillage system. The dataset for model testing included runoff measurements and EG morphological characteristics during 3 years. Model evaluation focused on EG evolution of volume, width, and length model outputs, and included calibration and testing phases and a global sensitivity analysis (GSA). While the model did not fully reproduce width and length, the model efficiency to simulate EG volume was satisfactory for both calibration and testing phases, supporting the watershed management objectives of the model. GSA revealed that the most sensitive factors were EG depth, critical shear stress, headcut detachment exponent coefficient b, and headcut detachment leading coefficient a. For EG outputs the model was additive, showing low sensitivity to interactions between the inputs. Prediction of EG spatial evolution on conservation tillage systems requires improved development of gully erosion components, since many of the processes were developed originally for traditional tillage practices or larger channel systems. Our results identify the need for future research when EG form within conservation tillage systems, in particular to study gully headcut, soil erodibility, and width functions specific to these practices. 相似文献
9.
Zhao JIN Jianbing PENG Jianqi ZHUANG Li FENG Aidi HUO Xingmin MU Wenlong WANG 《中国科学:地球科学(英文版)》2023,(4):821-839
Gully erosion is serious in the tableland area of the Loess Plateau due to high-intensity human activities and extreme rainfall, which cause serious soil loss and an increasing tableland shrinkage rate. Severe gully erosion has exerted a notable negative impact on local agriculture, human life and socioeconomic development. In recent decades, progress has been made in soil and water conservation with the goal of reducing soil erosion and protecting loess tableland, but basic research on gully co... 相似文献
10.
Vegetation and topographic controls on sediment deposition and storage on gully beds in a degraded mountain area 总被引:1,自引:0,他引:1
Active gully systems developed on highly weathered or loose parent material are an important source of runoff and sediment production in degraded areas. However, a decrease of land pressure may lead to a return of a partial vegetation cover, whereby gully beds are preferred recolonization spots. Although the current knowledge on the role of vegetation on reducing sediment production on slopes is well developed, few studies exist on the significance of restoring sediment transport pathways on the total sediment budget of degraded mountainous catchments. This study in the Ecuadorian Andes evaluates the potential of vegetation to stabilize active gully systems by trapping and retaining eroded sediment in the gully bed, and analyses the significance of vegetation restoration in the gully bed in reducing sediment export from degraded catchments. Field measurements on 138 gully segments located in 13 ephemeral steep gullies with different ground vegetation cover indicate that gully bed vegetation is the most important factor in promoting short‐term (1–15 years) sediment deposition and gully stabilization. In well‐vegetated gully systems ( ≥ 30% of ground vegetation cover), 0.035 m3 m–1 of sediment is deposited yearly in the gully bed. Almost 50 per cent of the observed variance in sediment deposition volumes can be explained by the mean ground vegetation cover of the gully bed. The presence of vegetation in gully beds gives rise to the formation of vegetated buffer zones, which enhance short‐term sediment trapping even in active gully systems in mountainous environments. Vegetation buffer zones are shown to modify the connectivity of sediment fluxes, as they reduce the transport efficiency of gully systems. First calculations on data on sediment deposition patterns in our study area show that gully bed deposition in response to gully bed revegetation can represent more than 25 per cent of the volume of sediment generated within the catchment. Our findings indicate that relatively small changes in landscape connectivity have the potential to create strong (positive) feedback loops between erosion and vegetation dynamics. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
采用有限元方法模拟了近20万年来青藏高原岩石圈形变演化过程,探讨了印度-欧亚大陆的碰撞对中国大陆岩石层形变和应力场的影响以及它们与强地震活动性的关系.结合现代GPS、地震和地质学观测的结果,对比分析了中国大陆在百万年、十万年和十年尺度上的形变和构造应力场的基本格局.研究表明:(1)印度-欧亚大陆的碰撞以及印度大陆的持续向北推进、挤压所产生的应力环境,一直主导了以青藏高原为核心的我国西部地域岩石圈构造、运动和演化,但其影响随着远离青藏高原地区而逐渐变小.(2)断层滑移和重力势作用对于青藏高原东西部以及塔里木盆地的影响相当大,它们导致青藏高原岩石层东西向形变速率增大,对青藏高原的中南部地区产生拉张效应,同时导致塔里木盆地出现整体的右旋趋势.(3)青藏高原区域水平方向形变速率和GPS观测结果吻合较好.但在垂直方向上,一些地区计算结果与观测数据相差较大,这说明单纯的挤压作用不是现代青藏高原隆升的惟一机制.现代青藏高原的隆升可能与其他驱动机制,如地幔对流、重力均衡以及剥蚀作用等有关.(4)印度板块的挤压作用基本上决定了中国大陆西部的主压应力场分布.(5)印度板块的碰撞对中国大陆的强地震活动性有重要影响,但华北地区是个例外,该地区的地震活动性很强而印度板块的挤压在该区域产生的影响却很小,说明其他的驱动力在一定程度上活化了华北地块. 相似文献
12.
Field, chronologic, chemical, and isotopic data for late Cenozoic basaltic rocks from the northwestern United States illustrate the relationship between crustal structure and tectonic forces in controlling the genesis and evolution of continental volcanism. In the northwestern U.S., the first major episode of basaltic volcanism was triggered by crustal rifting in a “back-arc” environment, east of the westward-migrating volcanic arc created by the subduction of the Juan-de-Fuca plate beneath the North American plate. Rifting and volcanism were concentrated by pre-existing zones of crustal weakness associated with boundaries between the old Archean core of the continent and newly accreted terranes. Basalts erupted during this time (Columbia River, Steens Mountain) show evidence of significant fractionation histories including contamination by crust of varying age depending on the crustal structure at the eruption site. Presumably this reflects ponding and stagnation of primary magmas in the crust or at the crust-mantle interface due to their encounter with thick crust, not yet extended and still containing its low-density, easily fusible component. Continued rifting of this crust, and modification of its composition through extraction of rhyolitic partial melts and deposition of the fractionation products from primary basaltic melts, coupled with a shift in stress orientation roughly 10.5 Ma ago, allowed relatively unfractionated and uncontaminated magmas to begin reaching the surface. In the western part of the region (Oregon Plateau), these magmas tapped a mantle source similar to that which produced most of the ocean island basalts of the northern hemisphere. To the east (Snake River Plain), however, the mantle sampled by basaltic volcanism has isotopic characteristics suggesting it has preserved a record of incompatible element enrichment processes associated with the formation of the overlying Archean crustal section some 2.6 Ga ago. 相似文献
13.
The cycle of instability: stress release and fissure flow as controls on gully head retreat 总被引:1,自引:0,他引:1
A. J. C. Collison 《水文研究》2001,15(1):3-12
Gully head and wall retreat has commonly been attributed to fluvial scour and head collapse as a result of soil saturation, sapping or piping. The empirical evidence to substantiate these conceptual models is sparse, however, and often contradictory. This paper explores the hydrological and mechanical controls on gully head and wall stability by modelling the hydrology, stability and elastic deformation of a marl gully complex in Granada Province, south‐east Spain. The hydrological and slope‐stability simulations show that saturated conditions can be reached only where preferential fissure flow channels water from tension cracks into the base of the gully head, and that vertical or subvertical heads will be stable unless saturation is achieved. Owing to the high unsaturated strengths of marl measured in this research, failure in unsaturated conditions is possible only where the gully head wall is significantly undercut. Head retreat thus requires the formation of either a tension crack or an undercut hollow. Finite‐element stress analysis of eroding slopes reveals a build up of shear stress at the gully head base, and a second stress anomaly just upslope of the head wall. Although tension cracks on gully heads have often been attributed to slope unloading, this research provides strong evidence that the so called ‘sapping hollow’ commonly found in the gully headwall base is also a function of stress release. Although further research is needed, it seems possible that ‘pop out’ failures in river channels may be caused by the same process. The hydrological analysis shows that, once a tension crack has developed, throughflow velocity in the gully headwall will increase by an order of magnitude, promoting piping and enlargement of this weakened area. It is, therefore, possible to envisage a cycle of gully expansion in which erosion, channel incision or human action unloads the slope below a gully head, leading to stress patterns that account for the tension crack and a stress‐release hollow. The tension crack promotes faster throughflow, encouraging hollow enlargement and piping, which undercut the gully head. The tension crack permits the development of positive pore‐water pressures behind the gully head, leading either to failure or contributing to toppling. Finally the debris may be eroded by fluvial action, unloading a new section of slope and completing the cycle of gully head retreat. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
14.
SIBERIA is a physically based model for the geomorphic evolution of landforms. It is essential that the SIBERIA model be tested or validated against controlled landform development. Previous studies have demonstrated that SIBERIA is able to simulate declining equilibrium landforms and in this paper we examine SIBERIA's ability to simulate landforms as they evolve to their declining equilibrium form. These landscapes are termed transient landforms. Landscapes generated by SIBERIA were compared to those produced by a physical model (experimental model landforms) at stages of evolution. Comparison of the experimental landscapes with the simulated landscapes using total mass, hypsometric curve, width function, cumulative area distribution and area–slope demonstrate that SIBERIA can simulate the experimental model landscape during development (i.e. transient landscapes). Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
15.
LiYang Xiong GuoAn Tang BaoYin Yuan ZhongChen Lu FaYuan Li Lei Zhang 《中国科学:地球科学(英文版)》2014,57(8):1944-1952
The influence of pre-quaternary underlying terrain on the formation of loess landforms, i.e., the geomorphological inheritance issue, is a focus in studies of loess landforms. On the basis of multi-source information, we used GIS spatial analysis methods to construct a simulated digital elevation model of a pre-quaternary paleotopographic surface in a severe soil erosion area of the Loess Plateau. To reveal the spatial relationship between underlying paleotopography and modern terrain, an XY scatter diagram, hypsometric curve, gradient and concavity of terrain profiles are used in the experiments. The experiments show that the altitude, gradient and concavity results have significant linear positive correlation between both terrains, which shows a relatively strong landform inheritance relationship, particularly in the intact and complete loess deposit areas. Despite the current surface appearing somewhat changed from the original shape of the underlying terrain under different erosion forces, we reveal that the modern terrain generally smoothes the topographic relief of underlying terrain in the loess deposition process. Our results deepen understanding of the characteristics of geomorphological inheritance in the formation and evolution of loess landforms. 相似文献
16.
Little is known of Holocene landform development in Upland Britain. This paper describes a site at Middle Langdale in the Howgill Fells of Cumbria where large, but now stabilized and inactive gullies cut through periglacial material. At the base of the gullies large debris cones have buried earlier alluvial sediments on the valley floor. On these sediments and buried by the debris cones is a well-developed organic soil from which two 14C dates have been obtained in an attempt to estimate the age range of the soil. These dates range from 2580±55 years BP for the fine particulate fraction from the base of the organic horizon to 940±95 years BP for fossil rootlets from the uppermost organic layer, immediately below the overlying debris cones. The pollen evidence suggests that the valley floor site was initially dominated by alder carr and later by a Juncus marsh with birch, alder and hazel nearby. The pollen, from the surrounding upland area suggests woodland on the valley sides, dominated by oak and elm that was later replaced by a more open environment rich in heath species and in which disturbed ground species were present. The magnetic evidence indicates a stable local environment during soil formation but shows a sudden inwash of unweathered debris at the top of the buried soil. The evidence suggests that the valley floor was geomorphologically stable throughout the period of soil formation, although there was a local change in valley floor vegetation and a reduction of woodland cover on the valley sides at sometime during the period. The evidence then points to major geomorphological changes; a wave of soil erosion, gully development and debris cone deposition, perhaps following the Scandinavian introduction of sheep farming in the tenth century A.D. 相似文献
17.
程安龙 《地震地磁观测与研究》1999,20(5):54-66
中国地磁台站面临着现代化技术改造问题。虽然现代化要以数字化为基础,但数字化不等于现代化。数字化记录应根据中国的国情,有正确的系统组成和恰当的技术指标。现代化有别于经典仪器的主要点在于数字化,准实时数据传输,即时的数据处理和资料产出以及更高的资料质量,只有这样才符合现代化的基本要求。本文对有关中国地磁台站的现代化技术问题进行了讨论。 相似文献
18.
J. J. Kasper‐Zubillaga G. Ortiz‐Zamora W. W. Dickinson J. Urrutia‐Fucugauchi A. M. Soler‐Arechalde 《地球表面变化过程与地形》2007,32(3):366-389
Textural, compositional, physical and geophysical determinations were carried out on 111 beach and dune sand samples from two areas in New Zealand: the Kapiti–Foxton coast sourced by terranes of andesite and greywackes and the Farewell Spit–Wharariki coast sourced by a wide variety of Paleozoic terranes. Our aim is to understand how long‐shore drift, beach width and source rock control the sedimentological and petrographic characteristics of beach and dune sands. Furthermore, this study shows the usefulness of specific minerals (quartz, plagioclase with magnetite inclusions, monomineralic opaque grains) to interpret the physical processes (fluvial discharges, long‐shore currents, winds) that distribute beach and dune sands in narrow and wide coastal plains. This was done by means of direct (grain size and modal analyses) and indirect (specific gravity, magnetic/non‐magnetic separations M/NM, magnetic susceptibility measurements, hysteresis loops) methods. Results are compared with beach sands from Hawaii, Oregon, the Spanish Mediterranean, Elba Island and Southern California. Compositionally, the Kapiti–Foxton sands are similar to first‐order immature sands, which retain their fluvial signature. This results from the high discharge of rivers and the narrow beaches that control the composition of the Kapiti–Foxton sands. The abundance of feldspar with magnetite inclusions controls the specific gravity of the Kapiti–Foxton sands due to their low content of opaque minerals and coarse grain size. Magnetic susceptibility of the sands is related mainly to the abundance of feldspars with Fe oxides, volcanic lithics and free‐opaque minerals. The Farewell Spit–Wharariki sands are slightly more mature than the Kapiti–Foxton sands. The composition of the Farewell Spit–Wharariki sands does not reflect accurately their provenance due to the prevalence of long‐shore drift, waves, little river input and a wide beach. Low abundance of feldspar with magnetite inclusions and free opaque grains produces poor correlations between specific gravity (Sg) and Fe oxide bearing minerals. The small correlation between opaque grains and M/NM may be related to grain size. The magnetic susceptibility of Farewell Spit–Wharariki sands is low due to the low content of grains with magnetite inclusions. Hysteresis and isothermal remnant magnetization (IRM) agree with the magnetic susceptibility values. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
19.
Grazing impacts on gully dynamics indicate approaches for gully erosion control in northeast Australia 总被引:1,自引:0,他引:1 下载免费PDF全文
Scott N. Wilkinson Anne E. Kinsey‐Henderson Aaron A. Hawdon Peter B. Hairsine Rebecca Bartley Brett Baker 《地球表面变化过程与地形》2018,43(8):1711-1725
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd. 相似文献
20.
T. Vanwalleghem J. Poesen I. Vitse H. R. Bork M. Dotterweich G. Schmidtchen J. Deckers A. Lang B. Mauz 《地球表面变化过程与地形》2007,32(4):574-586
Closed depressions (CDs) are lower lying areas where the sediment eroded from the surrounding soil surfaces draining towards the CD is trapped in the system. CDs have been reported in several regions of the European loess belt and are attributed either to natural processes (e.g. dissolution of subsurface horizons) or to human intervention (e.g. quarrying). Previous studies focussed mainly on cropland areas where, however, only few and largely filled in CDs remain. The objectives of this study were to i) assess the spatial distribution of CDs under forest and cropland, ii) to determine and compare the morphology of CDs under forest and under cropland, and iii) to determine the origin and age of these CDs under forest. In a study area located partly in ancient forest (13 km2) and partly in cropland (29 km2), a systematic survey revealed the presence of 71 CDs under forest (5·3 CD.km?2) and 30 CDs under cropland (1 CD.km?2). Comparison of their morphology showed that CDs under forest were significantly deeper, with steeper sidewalls and a smaller surface area because of the erosion and deposition processes acting on the CDs under cropland. By comparing CDs that had been under cropland for different time intervals, the rate of this morphological evolution could be reconstructed. Analysis of the soil stratigraphy of two representative CDs in the ancient forest area confirmed their origin as quarries. Most probably, calcareous loess was excavated since this soil horizon, about two to five meters thick, was completely absent within the CDs. Dating of the infilling of one CD by optically stimulated luminescence (OSL) shows that the CD filled in between the first century BC and the fourth century AD. This dating corresponds to the dating of sediment deposits in nearby, human‐induced gullies that were attributed to an agricultural land use phase between the 18th century BC and the third century AD. 相似文献