首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the early Pleistocene hominin fossils found in East Asia continent are widely recognized as the earliest hominins migrated from Africa, debates remain on the morphology and taxonomy of these fossils. In this study, dental crown shape of the three early Pleistocene hominin teeth (P3, M1, and M1) found in Jianshi, Hubei Province of China was analyzed by means of geometric morphometrics. The comparative samples of fossil hominins from Africa, Asia, and Europe as well as those of modern humans (N=257) were used. The results indicate that the contour, asymmetry, and cusp patterns of these three types of teeth differ obviously between the fossil hominins and modern humans. The crown shape of P3 in most fossil hominins including Australopithecus, African early Homo, and Asian Pleistocene hominins are asymmetric with their crown occlusal contours long and curving elliptic-shaped. The occlusal contour of the fossil hominin M1 is symmetric and rectangle-shaped with no marked cusp protrusion. The crown shape of fossil M1 is characterized by asymmetric contour with slightly projected metaconid and hypoconid. On the contrary, in modern Chinese and some European late Pleistocene hominins, the crowns of P3s show symmetric contours with buccal side wider than lingual side; the crown shape of M1 is asymmetric with lingual cusp distal-placed, especially for hypoconid; the M1 has symmetric and round crown contour. Our study reveals that Australopithecus has wide variations in its crown shape, whereas these dental morphospaces of Asian hominins are closely placed. The crown contour, symmetry, and cusp patterns of these three teeth of Jianshi hominin resemble those of Asian early and middle Pleistocene hominins. No marked difference in dental crown shape is shown between the Jianshi hominin and other Chinese Homo erectus, and there is also no evidence in support of the Jianshi hominin’s closeness to Australopithecus and African early Homo members.  相似文献   

2.
This is a preliminary study on the microtektites that were found in large numbers from the interval between 7.80 and 8.10 m depth of core S095-17957-2 (10°53.9’N, 115°18.3’E, water depth 2 195 m), northern Nansha area of the South China Sea. The microtektites vary in shape, with spherules predominating, and are commonly less than 1 mm in diameter, transparent or semitransparent, brownish in color, with bubbles inside. Based on coarse fraction stratigraphy and foraminifera/nanofossil biostratigraphical events the microtektite layer was assigned to nearly the Bm-hes/Matuyama magnetic reversal boundary (some 0.78 MaBP). Obviously, the present microtektites, and those found from the middle Pleistocene of the Indian Ocean, Australia and loess of northern China, were products of the same impact event and therefore, are useful as a reliable mark in Quaternary stratigraphy, as well as in paleoclimatic studies. Project supported by the National Natural Science Foundation of China (Grant Nos. 49676287, 49732060).  相似文献   

3.
The importance of calcimicrobes and microbialite in carbonate platform and reefal environments has been stressed in recent literature. Burne and Moore[1] introduced the term microbialite to describe the clotted, laminated and undifferentiated fabrics formed by mi-crobial communities. Microbialites are organosedi-mentary deposits that have accreted as a result of ben-thic (prokaryotic or eukaryotic) communities, trapping and binding detrital sediment[1]. Microbial organisms and microbialite are…  相似文献   

4.
任建业  雷超 《地球物理学报》2011,54(12):3303-3314
通过对盆地地震剖面构造-地层的详细解释,在莺歌海盆地和琼东南盆地(简称莺-琼盆地)古近纪同裂陷充填序列中识别出一条区域性的构造变革界面——T70,该界面在地震剖面上表现为显著的下削上超的地震反射结构特征,发育的时代为32~30 Ma,与南海海底扩张起始和红河断裂带左旋走滑的时间一致; T70界面将莺-琼盆地的同裂陷期地层分隔为断陷层和断坳层(琼东南盆地)或坳陷层(莺歌海盆地)两个构造-地层单元,这些构造地层单元和构造变革界面是南海及其周缘区域板块构造重组事件在莺-琼盆地的响应.论文结合前人成果,论述了以红河—越东—Lupar线断层为界,可以将南海及其周缘地区划分为结构构造、演化特征和动力学背景有显著区别的两个构造变形区:挤出-逃逸构造区和古南海俯冲拖曳构造区.以此构造变形分区为基础,确定了莺-琼盆地的动力学机制,建立了其构造演化模式.本研究有助于从整体上理解南海周缘盆地的发育演化过程及主要控制机制,并对大陆边缘动力学研究和陆缘盆地区的油气勘探有重要意义.  相似文献   

5.
6.
In-Chang Ryu 《Island Arc》2002,11(3):149-169
Abstract Carbonate breccias occur sporadically in the Lower–Middle Ordovician Maggol Limestone exposed in the Taebacksan Basin in the northeastern part of the northeast–southwest‐trending Ogcheon Belt, South Korea. These carbonate breccias have been previously interpreted as intraformational or fault‐related breccias. Thus, little attention has been focused on tectonic and stratigraphic significance of these carbonate breccias. The present study, however, indicates that the majority of these carbonate breccias are solution–collapse breccias, which are causally linked to paleokarstification. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates during the early Middle Ordovician (earliest Darriwilian). Extensive subaerial exposure of platform carbonates resulted in paleokarst‐related solution–collapse breccias in the upper Maggol Limestone. This subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk–Tippecanoe sequence boundary elsewhere beneath the Middle Ordovician succession and its equivalents, most notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second‐ or third‐order eustatic sealevel drop during the early Middle Ordovician. Although a paleokarst breccia zone is recognized beneath the Middle Ordovician succession in South Korea, the Sauk–Tippecanoe sequence boundary appears to be a conformable transgressive surface on the top of the paleokarst breccia zone in the upper Maggol Limestone. The paleokarst breccia zone beneath the conformable transgressive surface is represented by a thinning‐upward stack of exposure‐capped tidal flat‐dominated cycles that are closely associated with multiple occurrences of paleokarst‐related solution–collapse breccias. This paleokarst breccia zone was a likely consequence of repeated fourth‐ and fifth‐order sealevel fluctuations. It suggests that second‐ and third‐order eustatic sealevel drop may have been significantly tempered by substantial tectonic subsidence near the end of the Maggol deposition. The tectonic subsidence in the basin is also evidenced by the occurrence of coeval off‐platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e. the Yemi Breccia). With the continued tectonic subsidence, subsequent rise in the eustatic cycle caused drowning and deep flooding of carbonate platform, forming a transgressive surface on the top of the paleokarst breccia zone. This tectonic implication contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously interpreted. Thus, it is proposed that the Taebacksan Basin in the northeastern part of the Ogcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician. The proposed tectonic model in the basin gives much better insight to unravel the stratigraphic response to tectonic evolution of the Ogcheon Belt, which remains an enigmatic feature in formulating a tectonic framework of the Korean peninsula. The present study also provides a good example that the falling part of the eustatic sealevel cycle may not produce a significant event in a rapidly subsiding basin where the rate of eustatic fall always remained lower than the rate of subsidence.  相似文献   

7.
生物礁是重要的自然资源,在全球气候变化与碳循环中扮演了重要角色.磁性地层学是建立年代框架的有效手段,但是,由于生物礁沉积物中天然剩磁强度弱,南海地区生物礁的磁性地层学研究尚未很好展开.为此,本文利用西沙群岛西科1井乐东组生物礁沉积样品进行了详细的岩石磁学和磁性地层学研究.结果显示,西沙群岛乐东组记录了布容正极性时、奥杜维尔正极性时和松山负极性时.通过对比已有的钻孔资料,本文认为应基于岩石地层特征这一标准将西沙地区的乐东组埋深予以统一.在此基础上,综合磁性地层与~(230)Th定年结果,本文将乐东组的底界限定在~2.0 Ma.  相似文献   

8.
This paper presents the pollen record from the lower section of ODP1144 (depth 501.3-225.7 m, ca. 1.05-0.36 Ma). Two pollen zones (PA and PB) and eleven pollen subzones are recognized. Within zone PB, the 11 pollen subzones (PB21-11) are defined according to the pine, fern and herb variations, and are equivalent to the marine isotope stages 21-11 (MISs 21-11). The interglacial periods are typified by an increase in pine pollen and fern spores, and a decrease in herbaceous pollen, while the patterning during the glacial periods is just the opposite. During the interglacial periods, pollen assemblages were dominated by pine similar to those of the present day, suggesting that the paleoenvironment of the interglacial periods was similar to that of the present day, whereas the glacial periods are marked by an increase in herbaceous pollen, mainly Gramineae and Cyperaceae, indicating that grassland covered the exposed continental shelf when sea level declined. Increased Artemisia percentages and the highest  相似文献   

9.
The Nihewan (Nihowan) Basin is well known in the world for producing abundant mammal fossils and paleoliths. As one issue of the program 搕he early hominid evolution and environmental background in East Asia?a biostratigraphic survey was made in July 2001, and a large number of mammal fossils were un-earthed and 5 lithic artifacts were recognized from the Majuangou gully in the Nihewan Basin, Hebei Prov-ince, North China. 1 Stratigraphic section The new site is located on the south bank…  相似文献   

10.
Sporopollen analysis on a 346 cm peat record at Dahu, Jiangxi, chronologically constrained by 16 AMS 14C datings, provides an opportunity to reconstruct the vegetation evolution stages responding to cli-mate change in South China since the last glacial maximum. The result shows that during 18330-15630 cal a B.P., broad-leaved forest dominated the area, corresponding to mild, cool and fairly humid climate. At the interval of 15630-11600 cal a B.P., several evergreen broad-leaved species appeared within the broad-leaved forest, indicating moderate and humid condition. During early Holocene, broad-leaved evergreen forest community was constructed as Castanopsis/Lithorcarpus principally developed, suggesting a warm and humid scenario until 6000 cal a B. P. Since 6000 cal a B. P., abrupt forest deterioration happened with an contemporary increase of fern and herb communities, repre-senting a turnover to relatively cool and dry condition and as well, possible impact from human activi-ties. Meanwhile, several relatively cool and dry events can be identified in the sporopollen record, they can be correlated to the North Atlantic Heinrich event, YD and Holocene millennial-scale oscillations, implying that the low latitude climate was coupled with high latitude influences. Moreover, the varia-tions of temperature and humidity since LGM at Dahu were much smaller when compared with the re-cords in north monsoonal China.  相似文献   

11.
12.
The large 100-kyr cycles evident in most late-Pleistocene (0–0.6 Ma) paleoclimatic records still lack a satisfactory explanation. Previous studies of the nature of the transition from the early Pleistocene (1.2–1.8 Ma) 41-kyr-dominated climate regime to the 100-kyr world have been based almost exclusively on benthic foraminiferal oxygen isotopic (δ18O) data. It is generally accepted that the late Pleistocene 100-kyr cycles represent a newly evolved sensitivity to eccentricity/precession, superimposed on an earlier, and largely constant, response to obliquity and precession forcing. However, orbitally-resolved Pleistocene sea surface temperature (SST) records from a variety of oceanic regions paint a rather different picture of the global climate transition across the mid-Pleistocene transition (MPT, 0.6–1.2 Ma). Reanalysis of these SST records shows that: (1) an early onset of strong 100-kyr-like cycles in two low-frequency bands (~ 120–145 kyr and ~ 60–80 kyr), derived from the bundling of two/three obliquity cycles into grand cycles (obliquity subharmonics), occurred in tropical SST records during the early Pleistocene, (2) these two early Pleistocene periods converge into the late-Pleistocene 100-kyr period in tropical SST records, (3) the dominance of 100-kyr SST power in the late Pleistocene coincides with a dramatic decline in the 41-kyr SST power, and (4) the correlation of timing of glacial terminations with eccentricity/precession variation could well extend back into the early Pleistocene. We demonstrate that most of these features also occur in δ18O records, but in a much more subtle manner. These features could be explained in two plausible ways: a shift in climate sensitivity from obliquity to eccentricity/precession (a modified version of the conventional view) or an increasingly nonlinear response to orbital obliquity across the MPT. However, our examination of the development of ~100-kyr cycles favors an obliquity bundling mechanism to form late Pleistocene 100-kyr cycles. We therefore suggest that the late Pleistocene 100-kyr climatic cycles are likely a nonlinear response to orbital obliquity, although the timing of late Pleistocene 100-kyr climatic cycles and their early forms appears to be paced by eccentricity/precession.  相似文献   

13.
This study presents palaeodosimetric results from the Middle Pleistocene archaeological site of Coudoulous I (Lot, SW France). Nine sedimentary quartz samples (41–60 μm) have been analyzed using a multiple aliquot protocol based on the measurement of the TT-OSL signal. In addition, 7 teeth and 7 bones have been dated by combining the ESR method with U-series analyses. Both methods gave consistent age results allowing correlation of the Early Middle Paleolithic Human occupation of the site to MIS 6 and part of the Lower Paleolithic tools to MIS 7. Beyond the establishment of a radiometric chronology for the Coudoulous I sequence, this study focuses on the information extracted from the intercomparison of the methods. Our data suggest that 1) the TT-OSL signal is stable over at least the last 230 ka (considering the age range of the studied samples), 2) there are not significant problems of incomplete bleaching leading support to the applicability of the TT-OSL technique for sedimentary deposits associated with karstic contexts. This approach highlights the interest of combining luminescence and ESR/U-series methods to discuss the reliability of the dating results.  相似文献   

14.
Regional stratigraphic data of major fossil groups in the critical geologic periods could provide reliable materials not only for the studies of diversity changes in different biogeographic provinces,but also for the comparison of regional patterns in the major biotic events accumulated in a long history of investigation,the paleontologic and stratigraphic data of South China have made indispensable contributions to re-vealing the pattern of end-Permian extinction[1―3],analyzing the differenc…  相似文献   

15.
Four episodes of granitic rocks at 517, 501–496, 462–451, and 426–385 Ma occurred in the South Altyn subduction-collision complex. The first episode of granite emplacement predates the formation of the ophiolite type mafic rock(?500 Ma), and the three subsequent episodes can be temporally correlated to high-pressure(HP) to ultrahigh-pressure(UHP) metamorphism at ca. 500 Ma, retrograde granulite-facies metamorphism at ca. 450 Ma, and amphibolite-facies metamorphism at ca. 420 Ma, respectively. A comprehensive study of these granitic rocks, along with the regional geological background, mafic-ultramafic rocks, and HP-UHP metamorphism, indicates that the four episodes of granitic magmatism are sequentially derived from the partial melting of the earlier subducted oceanic crust at 517 Ma, the thickened continental crust due to continental subduction at ca. 500 Ma, the mid-upper crust in response to slab breakoff at ca. 450 Ma, and the tectonic transition from contraction to extension at ca. 420 Ma. The formation age of 517 Ma for oceanic adakite provides a direct constraint on the time of the oceanic subduction in South Altyn. In addition, there is a ca. 10 Myr interval between the oceanic subduction to the continental deep subduction, suggesting that the Early Paleozoic tectonic evolution might have been a successive process in South Altyn. The four episodes of formation of granitic rocks, mafic-ultramafic rocks, and HP-UHP metamorphic rocks have fully recorded the tectonic evolution, beginning with the oceanic subduction, followed by continental subduction, and later exhumation during the Early Paleozoic in South Altyn.  相似文献   

16.
We established a high-resolution calcareous nannofossil biostratigraphy for the late Pliocene–Pleistocene by analyzing a 242 m-thick, continuous sedimentary succession from Ocean Drilling Program Site 1146, Hole A, in the South China Sea (SCS). A total of 14 calcareous nannofossil datums were detected in the SCS succession. They are, in descending order: first occurrence (FO) of Emiliania huxleyi, last occurrence (LO) of Pseudoemiliania lacunosa, LO of Reticulofenestra asanoi, FO of Gephyrocapsa parallela, FO of R. asanoi, LO of large Gephyrocapsa spp., FO of large G. spp., FO of Gephyrocapsa oceanica, FO of Gephyrocapsa caribbeanica, LO of Calcidiscus macintyrei, LO of Discoaster brouweri, LO of Discoaster pentaradiatus, LO of Discoaster surculus, and LO of Discoaster tamalis. The FO of E. huxleyi was not precisely detected due to poor preservation and dissolution of nannofossils in the underlying strata. We refined the previous calcareous nannofossil biostratigraphy in the SCS by identifying Gephyrocapsa species and four evolutionary extinction events of the genus Discoaster. The proposed calcareous nannofossil biostratigraphy correlates with those reported in other terrestrial and marine areas/sites and global benthic foraminiferal δ18O records. The age–depth curves based on nannofossil biostratigraphy indicate a significant increase in the sedimentation rates at the LO of R. asanoi (0.91–0.85 Ma). The timing of this increase corresponds to reef expansion in the Ryukyu Islands linked to a stepwise increase in Kuroshio Current intensity. This timing is broadly coeval with a sea surface temperature increase of ∼2 °C in the northwestern Pacific due to expansion of the Western Pacific Warm Pool towards the north and south subtropical regions. This can be explained by increased weathering and erosion of terrestrial areas in glacial periods and increased rainfall causing higher sediment transport in interglacial periods, which were both linked to Middle Pleistocene Transition-related climatic changes.  相似文献   

17.
Thirty-four ash layers of Pleistocene and Pliocene age from DSDP Site 192, northwestern Pacific Ocean, have been subjected to detailed chemical and optical study to evaluate: (1) the chemical and optical variability in glass shards from deep-sea ash layers, and (2) secondary changes brought about by prolonged exposure to seawater. Glass shards from approximately half of the ash layers studied were found to have uniform compositions which approach the precision of the microprobe chemical analyses, whereas the remainder are compositionally diverse (e.g., SiO2, variations of 5–15% among shards from the same ash layer) and appear to be the eruptive products of compositionally zoned magma chambers. Optical studies of glass shards confirm the absence of devitrification or the formation of pervasive secondary alteration products. By contrast, chemical studies suggest that the glass shards have experienced progressive hydration with possible minor ion exchange of K, Mg, Ca and Si. The hydration occurs rapidly and leads to a rather uniform water content of 4.5–5% after several hundred thousands of years exposure to seawater. Step-wise heating dehydration experiments, optical effects, and published'oxygen isotope studies indicate that the water of hydration is incorporated uniformly within the glass. Systematic chemical differences between electron microprobe analyses of glass shard interiors and corresponding bulk chemical study by atomic absorption lead us to postulate that glass shard margins have undergone a minor chemical exchange with major cations in seawater. They have gained 0.10–0.20 wt. % K20, MgO, and CaO while losing a corresponding amount of Si2O. Although the glass shards from DSDP Site 192 are hydrated and may have experienced subtle, surficial ion exchange, we stress that they are the most chemically representative samples available of magmas that were explosively erupted from volcanic arcs.  相似文献   

18.
Different models have been proposed for the formation and tectonic evolution of the South China Sea(SCS), including extrusion of the Indochina Peninsula,backarc extension, two-stage opening, proto-SCS dragging,extension induced by a mantle plume, and integrated models that combine diverse factors. Among these, the extrusion model has gained the most attention. Based on simpli?ed physical experiments, this model proposes that collision between the Indian and Eurasian Plates resulted in extrusion of the Indochina Peninsula, which in turn led to opening of the SCS. The extrusion of the Indochina Peninsula, however, should have led to preferential opening in the west side of the SCS, which is contrary to observations. Extensional models propose that the SCS was a backarc basin, rifted off the South China Block. Most of the backarc extension models, however, are not compatible with observations in terms of either age or subduction direction. The two-stage extension model is based on extensional basins surrounding the SCS. Recent dating results indeed show two-stage opening in the SCS, but the Southwest Subbasin of the SCS is much younger, which contradicts the two-stage extension model. Here we propose a re?ned backarc extension model. There was a wide Neotethys Ocean between the Australian and Eurasian Plates before the Indian-Eurasian collision. The ocean ?oor started to subduct northward at *125 Ma, causing backarc extension along the southern margin of the Eurasian Plate and the formation of the proto-SCS. The Neotethys subduction regime changed due to ridge subduction in the Late Cretaceous, resulting in fold-belts, uplifting, erosion, and widespread unconformities. It may also have led to the subduction of the proto-SCS. Flat subduction of the ridge may have reached further north and resulted in another backarc extension that formed the SCS. The rollback of the?at subducting slab might have occurred *90 Ma ago; the second backarc extension may have initiated between 50 and 45 Ma. The opening of the Southwest Subbasin is roughly simultaneous with a ridge jump in the East Subbasin, which implies major tectonic changes in the surrounding regions, likely related to major changes in the extrusion of the Indochina Peninsula.  相似文献   

19.
Contamination characteristics of petroleum hydrocarbons in soils and the underlying unsaturated subsurface were analysed by investigating and sampling at different depth of five boreholes named SH1 through SH5 at a typical petrochemical site, North China. Topsoil volatile organic gas measurement revealed that SH‐3 was the center of one pollution plume. Soil samples analysis showed that aromatic hydrocarbons and chlorinated hydrocarbons were major pollutants. Their maximum concentration was found at 6.5 and 14.6 m of SH‐2, 13 m of SH‐5, and 18.5 m of SH‐3. These pollutants are mostly accumulated on the interface between two different lithological layers, especially between the sand and silt clay layers. Denitrifying and iron reducing were main biogeochemical processes in this site. Under the influence of groundwater level fluctuation, free NAPLs passed through the boundary and dissolved into the lower groundwater. Knowledge of these associations between contaminant distributions and affecting factors could have implications for soil and groundwater pollution prevention and control. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Paleozoic marine strata in this area is considered the continental margin deposits of the Jiamusi-Mongolia Block by analyzing the stratigraphic contact relationship, lithofacies, etc. The results are exhibited in a series of tectonic paleogeographic maps. This presents an important proof for the foundation of the Jiamusi-Mongolia Block, and confines the forming time of Jiamusi-Mongolia Block to the Late Silurian. Supported by Science and Technology Project of Sinopec (Grant No. G0800-06-ZS-324)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号