首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local extreme rain usually resulted in disasters such as flash floods and landslides. Upon today, it is still one of the most difficult tasks for operational weather forecast centers to predict those events accurately. In this paper, we simulate an extreme precipitation event with ensemble Kalman filter (EnKF) assimilation of Doppler radial-velocity observations, and analyze the uncertainties of the assimilation. The results demonstrate that, without assimilation radar data, neither a single initialization of deterministic forecast nor an ensemble forecast with adding perturbations or multiple physical parameterizations can predict the location of strong precipitation. However, forecast was significantly improved with assimilation of radar data, especially the location of the precipitation. The direct cause of the improvement is the buildup of a deep mesoscale convection system with EnKF assimilation of radar data. Under a large scale background favorable for mesoscale convection, efficient perturbations of upstream mid-low level meridional wind and moisture are key factors for the assimilation and forecast. Uncertainty still exists for the forecast of this case due to its limited predictability. Both the difference of large scale initial fields and the difference of analysis obtained from EnKF assimilation due to small amplitude of initial perturbations could have critical influences to the event's prediction. Forecast could be improved through more cycles of EnKF assimilation. Sensitivity tests also support that more accurate forecasts are expected through improving numerical models and observations.  相似文献   

2.
The orthogonal conditional nonlinear optimal perturbations (CNOPs) method, orthogonal singular vectors (SVs)method and CNOP+SVs method, which is similar to the orthogonal SVs method but replaces the leading SV (LSV) with the first CNOP, are adopted in both the Lorenz-96 model and Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Fifth-Generation Mesoscale Model (MM5) for ensemble forecasts. Using the MM5, typhoon track ensemble forecasting experiments are conducted for strong Typhoon Matsa in 2005. The results of the Lorenz-96 model show that the CNOP+SVs method has a higher ensemble forecast skill than the orthogonal SVs method, but ensemble forecasts using the orthogonal CNOPs method have the highest forecast skill. The results from the MM5 show that orthogonal CNOPs have a wider horizontal distribution and better describe the forecast uncertainties compared with SVs. When generating the ensemble mean forecast, equally averaging the ensemble members in addition to the anomalously perturbed forecast members may contribute to a higher forecast skill than equally averaging all of the ensemble members. Furthermore, for given initial perturbation amplitudes, the CNOP+SVs method may not have an ensemble forecast skill greater than that of the orthogonal SVs method, but the orthogonal CNOPs method is likely to have the highest forecast skill. Compared with SVs, orthogonal CNOPs fully consider the influence of nonlinear physical processes on the forecast results; therefore, considering the influence of nonlinearity may be important when generating fast-growing initial ensemble perturbations. All of the results show that the orthogonal CNOP method may be a potential new approach for ensemble forecasting.  相似文献   

3.
Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4°) and regional (resolution 1/10°) domains with forecast ranges of +?7 and +?3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing +?10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.  相似文献   

4.
This study examines the roles of the multi-physics approach in accounting for model errors for typhoon forecasts with the local ensemble transform Kalman filter (LETKF). Experiments with forecasts of Typhoon Conson (2010) using the weather research and forecasting (WRF) model show that use of the WRF’s multiple physical parameterization schemes to represent the model uncertainties can help the LETKF provide better forecasts of Typhoon Conson in terms of the forecast errors, the ensemble spread, the root mean square errors, the cross-correlation between mass and wind field as well as the coherent structure of the ensemble spread along the storm center. Sensitivity experiments with the WRF model show that the optimum number of the multi-physics ensemble is roughly equal to the number of combinations of different physics schemes assigned in the multi-physics ensemble. Additional idealized experiments with the Lorenz 40-variable model to isolate the dual roles of the multi-physics ensemble in correcting model errors and expanding the local ensemble space show that the multi-physics approach appears to be more essential in augmenting the local rank representation of the LETKF algorithm rather than directly accounting for model errors during the early cycles. The results in this study suggest that the multi-physics approach is a good option for short-range forecast applications with full physics models in which the spinup of the ensemble Kalman filter may take too long for the ensemble spread to capture efficiently model errors and cross-correlations among model variables.  相似文献   

5.
Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate.Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts’ availability and accuracy raises the question on how to use them for operational management.The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance.TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.  相似文献   

6.
We present estimates of future earthquake rate density (probability per unit area, time, and magnitude) on a 0.1-degree grid for a region including California and Nevada, based only on data from past earthquakes. Our long-term forecast is not explicitly time-dependent, but it can be updated at any time to incorporate information from recent earthquakes. The present version, founded on several decades worth of data, is suitable for testing without updating over a five-year period as part of the experiment conducted by the Collaboratory for Study of Earthquake Predictability  (CSEP). The short-term forecast is meant to be updated daily and tested against similar models by CSEP. The short-term forecast includes a fraction of our long-term one plus time-dependent contributions from all previous earthquakes. Those contributions decrease with time according to the Omori law: proportional to the reciprocal of the elapsed time. Both forecasts estimate rate density using a radially symmetric spatial smoothing kernel decreasing approximately as the reciprocal of the square of epicentral distance, weighted according to the magnitude of each past earthquake. We made two versions of both the long- and short-term forecasts, based on the Advanced National Seismic System  (ANSS) and Preliminary Determinations of Epicenters (PDE) catalogs, respectively. The two versions are quite consistent, but for testing purposes we prefer those based on the ANSS catalog since it covers a longer time interval, is complete to a lower magnitude threshold and has more precise locations. Both forecasts apply to shallow earthquakes only (depth 25 km or less) and assume a tapered Gutenberg-Richter magnitude distribution extending to a lower threshold of 4.0.  相似文献   

7.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This study examines the short-range forecast accuracy of the Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) as applied to the July 2006 episode of the Indian summer monsoon (ISM) and the model's sensitivity to the choice of different cumulus parameterization schemes (CPSs), namely Betts-Miller, Grell (GR) and Kain-Fritsch (KF). The results showed that MM5 day 1 (0–24 h prediction) and day 2 (24–48 h prediction) forecasts using all three CPSs overpredicted monsoon rainfall over the Indian landmass, with the larger overprediction seen in the day 2 forecasts. Among the CPSs, the rainfall distribution over the Indian landmass was better simulated in forecasts using the KF scheme. The KF scheme showed better skill in predicting the area of rainfall for most of the rainfall thresholds. The root mean square error (RMSE) in day 1 and day 2 rainfall forecasts using different CPSs showed that rainfall simulated using the KF scheme agreed better with the observed rainfall. As compared to other CPSs, simulation using the GR scheme showed larger RMSE in wind speed prediction at 850 and 200 hPa over the Indian landmass. MM5 24-h temperature forecasts at 850 hPa with all the CPSs showed a warm bias of the order of 1 K over the Indian landmass and the bias doubled in 48-h model forecasts. The mean error in temperature prediction at 850 hPa over the Indian region using the KF scheme was comparatively smaller for all the forecast intervals. The model with all the CPSs overpredicted humidity at 850 hPa. The improved prediction by MM5 with the KF scheme is well complemented by the smaller error shown by the KF scheme in vertical distribution of heat and mean moist static energy in the lower troposphere. In this study, the KF scheme which explicitly resolve the downdrafts in the cloud column tended to produce more realistic precipitation forecasts as compared to other schemes which did not explicitly incorporate downdraft effects. This is an important result especially given that the area covered by monsoon-precipitating systems is largely from stratiform-type clouds which are associated with strong downdrafts in the lower levels. This result is useful for improving the treatment of cumulus convection in numerical models over the ISM region.  相似文献   

9.
Weather radar has a potential to provide accurate short‐term (0–3 h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro‐meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)‐TN] and the empirically based scheme (ERF‐EM), and explores which one exhibits higher predictive skill. The ERF‐TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so‐called ERF‐EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ‘ground truth’ represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF‐EM achieves better performance than the ERF‐TN at 1‐h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2 h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A probabilistic fog forecast system was designed based on two high resolution numerical 1-D models called COBEL and PAFOG. The 1-D models are coupled to several 3-D numerical weather prediction models and thus are able to consider the effects of advection. To deal with the large uncertainty inherent to fog forecasts, a whole ensemble of 1-D runs is computed using the two different numerical models and a set of different initial conditions in combination with distinct boundary conditions. Initial conditions are obtained from variational data assimilation, which optimally combines observations with a first guess taken from operational 3-D models. The design of the ensemble scheme computes members that should fairly well represent the uncertainty of the current meteorological regime. Verification for an entire fog season reveals the importance of advection in complex terrain. The skill of 1-D fog forecasts is significantly improved if advection is considered. Thus the probabilistic forecast system has the potential to support the forecaster and therefore to provide more accurate fog forecasts.  相似文献   

11.
Streamflow forecasts are updated periodically in real time, thereby facilitating forecast evolution. This study proposes a forecast-skill-based model of forecast evolution that is able to simulate dynamically updated streamflow forecasts. The proposed model applies stochastic models that deal with streamflow variability to generate streamflow scenarios, which represent cases without forecast skill of future streamflow. The model then employs a coefficient of prediction to determine forecast skill and to quantify the streamflow variability ratio explained by the forecast. By updating the coefficients of prediction periodically, the model efficiently captures the evolution of streamflow forecast. Simulated forecast uncertainty increases with increasing lead time; and simulated uncertainty during a specific future period decreases over time. We combine the statistical model with an optimization model and design a hypothetical case study of reservoir operation. The results indicate the significance of forecast skill in forecast-based reservoir operation. Shortage index reduces as forecast skill increases and ensemble forecast outperforms deterministic forecast at a similar forecast skill level. Moreover, an effective forecast horizon exists beyond which more forecast information does not contribute to reservoir operation and higher forecast skill results in longer effective forecast horizon. The results illustrate that the statistical model is efficient in simulating forecast evolution and facilitates analysis of forecast-based decision making.  相似文献   

12.
Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast   总被引:2,自引:0,他引:2  
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.  相似文献   

13.
14.
This study examines the effectiveness of targeted meteorological observations for improving ozone prediction in Houston and the surrounding area based on perfect-model simulation experiments. Supplementary observations are targeted for the location that has the highest impact factor (maximum Kalman gain) estimated from an ensemble and is expected to minimize ozone forecast uncertainty at the verification time. It is found that the observational impact factor field varies with time and is sensitive to ensemble resolutions and physics parameterizations. The efficiency of observation targeting is further examined through assimilating observations in areas with different impact factors using an ensemble Kalman filter. It is found that the ensemble sensitivity analysis is capable of locating supplementary observations that may reduce meteorological and ozone forecast error, but not as effectively as expected.  相似文献   

15.
A Nearest Neighbor Method (NNM) is used to forecast daily river flows that were measured at a single location over a time period spanning about seventy years. A parsimonious three parameter NNM is developed in the context of Nonlinear Dynamics and the dependence between forecast error and length of history used to construct forecasts is investigated. Comparison is made to Auto-Regressive Integrated Moving Average (ARIMA) models. The NNM is found to provide improved forecasts.  相似文献   

16.
Skillful low visibility forecasts are essential for air-traffic managers to effectively regulate traffic and to optimize air-traffic control at international airports. For this purpose, the COBEL-ISBA local numerical forecast system has been implemented at Paris CDG international airport. This local approach is robust owing to the assimilation of detailed local observations. However, even with dedicated observations and initialization, uncertainties remain in both initial conditions and mesoscale forcings. The goal of the research presented here is to address the sensitivity of COBEL-ISBA forecast to initial conditions and mesoscale forcings during the winter season 2002–2003. The main sources of uncertainty of COBEL-ISBA input parameters have been estimated and the evaluation of parameter uncertainty on the forecasts has been studied. A budget strategy is applied during the winter season to quantify COBEL-ISBA sensitivity. This study is the first step toward building a local ensemble prediction system based on COBEL-ISBA. The conclusions of this work point out the potential for COBEL-ISBA ensemble forecasting and quantify sources of uncertainty that lead to dispersion.  相似文献   

17.
18.
A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) the combination of initial fields and the forecasts at the ending time, and 3) the combination of the forecasts at...  相似文献   

19.
This article aims at analyzing if high-frequency radar observations of surface currents allow to improve model forecasts in the Ligurian Sea, where inertial oscillations are a dominant feature. An ensemble of ROMS models covering the Ligurian Sea, and nested in the Mediterranean Forecasting System, is coupled with two WERA high-frequency radars. A sensitivity study allows to determine optimal parameters for the ensemble filter. By assimilating observations in a single point, the obtained correction shows that the forecast error covariance matrix represents the inertial oscillations, as well as large- and meso-scale processes. Furthermore, it is shown that the velocity observations can correct the phase and amplitude of the inertial oscillations. Observations are shown to have a strong effect during approximately half a day, which confirms the importance of using a high temporal observation frequency. In general, data assimilation of HF radar observations leads to a skill score of about 30% for the forecasts of surface velocity.  相似文献   

20.
Based on the thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), a thermospheric-ionospheric data assimilation and forecast system is developed. Using this system, we estimated the oxygen ions, neutral temperature, wind, and composition by assimilating the simulated data from Formosa Satellite 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) occultation electron density profiles to evaluate their effects on the ionospheric forecast. An ensemble Kalman filter data assimilation scheme and combined state and parameter estimation methods are used to estimate the unobserved parameters in the model. The statistical results show that the neutral and ion compositions are more effective than the neutral temperature and wind for improving the forecast of the ionospheric electron density, whose root mean square errors in the assimilation period decreased by approximately 40%, 30%, and 10% due to the estimations of the neutral composition, oxygen ions, and neutral temperature, respectively. Due to the different physical and chemical processes that these parameters primarily affect, their e-folding times differ greatly from longer than 12 h for neutral composition to approximately 6 h for oxygen ions and 3 h for neutral temperature. The effect of estimating the neutral composition on improving the ionospheric forecast is greater than that of estimating the oxygen ions, which can be also be seen in an actual data assimilation experiment. This indicates that the neutral composition is the most important thermospheric parameter in ionospheric data assimilations and forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号