首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries(Globe Land30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×104 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×104 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate environment. Built-up areas in developed countries had relatively low impervious surface and high public green vegetation cover, with 50–60% urban impervious surfaces in Japan, South Korea and Singapore. In comparison, the proportion of urban impervious surfaces in developing countries is approaching or exceeding 80% in Asia. In general, the composition and spatial patterns of built-up areas reflected population aggregation and economic development level as well as their impacts on the health of the environment in the sub-watershed.  相似文献   

2.
The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.  相似文献   

3.
Based on the land surface temperature (LST), the land cover classification map,vegetation coverage, and surface evapotranspiration derived from EOS-MODIS satellite data, and by the use of GIS spatial analytic technique and multivariate statistical analysis method, the urban heat island (UHI) spatial distribution of the diurnal and seasonal variabilities and its driving forces are studied in Beijing city and surrounding areas in 2001. The relationships among UHI distribution and landcover categories, topographic factor, vegetation greenness, and surface evapotranspiration are analyzed. The results indicate that: (i) The significant UHI occur in Beijing city areas in the four seasons due to high heat capacity and multi-reflection of compression building, as well as with special topographic features of its three sides surrounded by mountains,especially in the summer. The UHI spatial distribution is corresponding with the urban geometry structure profile. The LST difference is approximately 4-6℃ between Beijing city and suburb areas, comparatively is 8- 10℃ between Beijing city area and outer suburb area in northwestern regions. (ii) The UHI distribution and intensity in daytime are different from nighttime in Beijing city area, the nighttime UHI is obvious. However, in the daytime, the significant UHI mainly appears in the summer, the autumn takes second place, and the UHI in the winter and the spring seem not obvious. The surface evapotranspiration in suburb areas is larger than that in urban areas in the summer, and high latent heat exchange is evident, which leads to LST difference between city area and suburb area. (iii) The reflection of surface landcover categories is sensitive to the UHI, the correlation between vegetation greenness and UHI shows obviously negative.The scatterplot shows that there is the negative correlation between NDVI and LST (R2 = 0.6481).The results demonstrate that the vegetation greenness is an important factor for reducing the UHI,and large-scale construction of greenbelts can considerably reduce the UHI effect.  相似文献   

4.
Assessing spatial pattern of urban thermal environment in Shanghai, China   总被引:6,自引:6,他引:0  
The aggravating urban thermal environment has considerable adverse effects on urban physical environment, energy consumption, and public health. Due to the complexity of factors contributing to the urban thermal environment, traditional statistical methods are insufficient for acquiring data and analyzing the impacts of human activities on the thermal environment, especially for identifying dominant factors. Based on thermal remote sensing imageries and Geographic Information System analysis, we assessed spatial pattern of urban thermal environment in Shanghai in 2008, and analyzed the factors contributing to the generation of urban heat island (UHI) using principal component analysis (PCA). We found that Shanghai had obvious UHI with uneven spatial pattern in 2008. Further, we identified three most important components leading to the variances of Shanghai’s UHI: the gradient from man-made to natural land cover, landscape configuration, and anthropogenic heat release. A linear model has thus been successfully constructed, implying that PCA is helpful in identifying major contributors to UHI. The findings are of significance for policy implication to urban thermal environment mitigation.  相似文献   

5.
Urban expansion is a hot topic in land use/land cover change(LUCC) researches. In this paper, maximum entropy model and cellular automata(CA) model are coupled into a new CA model(Maxent-CA) for urban expansion. This model can help to obtain transition rules from single-period dataset. Moreover, it can be constructed and calibrated easily with several steps.Firstly, Maxent-CA model was built by using remote sensing data of China in 2000(basic data) and spatial variables(such as population density and Euclidean distance to cities). Secondly, the proposed model was calibrated by analyzing training samples,neighborhood structure and spatial scale. Finally, this model was verified by comparing logistic regression CA model and their simulation results. Experiments showed that suitable sampling ratio(sampling ratio equals the proportion of urban land in the whole region) and von Neumann neighborhood structure will help to yield better results. Spatial structure of simulation results becomes simple as spatial resolution decreases. Besides, simulation accuracy is significantly affected by spatial resolution.Compared to simulation results of logistic regression CA model, Maxent-CA model can avoid clusters phenomenon and obtain better results matching actual situation. It is found that the proposed model performs well in simulating urban expansion of China. It will be helpful for simulating even larger study area in the background of global environment changes.  相似文献   

6.
人为热源对城市边界层结构影响的数值模拟研究   总被引:30,自引:1,他引:30       下载免费PDF全文
用南京大学多尺度模式系统在不同区域进行了多种人为热源引入方案的研究,结果表明:考虑时空变化的人为热源按比例分别引入到地表能量平衡方程和大气热量守恒方程是将人为热源引入模式的最优方案.人为热通量密度变化的敏感性试验结果发现:人为热源的存在对城市热岛的生成有重要作用.计算结果表明,南京现有的人为热源排放量对该地区的城市热岛贡献率约为296%,若人为热通量密度在现有量值的基础上增大1倍,则其热岛贡献率可达429%;此外,人为热的排放对清晨城市边界层逆温结构有一定程度的破坏作用,能明显升高夜间近地层气温达05~10℃,并能使白天湍流活动的影响范围增大,混合层高度抬高,使夜间城市热岛环流的影响范围扩大.  相似文献   

7.
Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.  相似文献   

8.
This paper describes the results of benchmark testing of land use change impact on direct runoff using Soil Conservation Service-Curve Number (SCS-CN) model in two ungauged neighbouring urban watersheds (Çınar and Kadıyakuplu) in Istanbul, Turkey. To examine this impact, the model was applied to daily rainfall data using three different dated (1982, 1996 and 2012) hydrological soil groups and land use of the two ungauged urban watersheds. Finally, the impact of land use change and model performance were evaluated with the rainfall-runoff regression, the coefficient of determination and the NSE test using benchmark runoff data based on 1982 land use conditions. The results of the analysis indicate that the changing of land use types from natural surfaces to impervious surfaces has a significant impact on surface runoff. Additionally, remarkable spatial variations of the land use changes and their impact on the runoff in 1996 and 2012 were more detected in the Çınar watershed compared with the Kadıyakuplu watershed. The planning decision on land use of the watersheds, has vital role in these differences. The results of this research also reveal that change to intensive land use in urban watersheds has a significantly larger impact on runoff generation than those rainfall.  相似文献   

9.
城市湖泊作为城市与自然之间进行水气交换的蓝色空间,具有供水、防洪、休闲、气候调节以及改善城市生态环境等诸多生态服务功能。中国地域辽阔、城市众多,不同区域的城市湖泊受自然地理环境和社会经济发展等因素的影响而具有显著的空间差异特征。目前已有研究对我国省会城市和个别大型城市的湖泊空间分布及变化特征等开展研究,但全国范围内各行政等级单元内城市湖泊分布的空间格局及其影响因素仍缺乏综合分析。本研究基于中国城市湖泊数据集,从城市分布的地域单元、行政等级、城市规模3个方面对城市湖泊分布特征进行统计分析和比较,并结合自然和人类活动要素,初步探讨影响城市湖泊分布规模和丰度的主控因子。结果表明,2020年全国共有约11万个面积大于0.001km2城市湖泊(不包括太湖、滇池等大型湖泊),总面积约2112 km2,约占全国城市(遥感城市不透水层区域)面积的1.1%。城市湖泊的分布具有显著的集聚和分异特征,数量超过70%的城市湖泊分布在约20%的县(区)级行政单元,约21%的县(区)级行政单元基本没有(<10 m遥感影像分辨率下10个像元)城市湖泊分布。城市湖泊数...  相似文献   

10.
Urbanization influences hydrologic cycle significantly on local, regional even global scale. With urbanization the water resources demand for dense population sharpened, thus it is a great challenge to ensure water supply for some metropolises such as Beijing. Urban area is traditionally considered as the area with lower evapotranspiration (ET) on account of the impervious surface and the lower wind speed. For most remote sensing models, the ET, defined as latent heat in energy budget, is estimated as the difference between net radiation and sensible heat. The sensible heat is generally higher in urban area due to the high surface temperature caused by heat island, therefore the latent heat (i.e. the ET) in urban area is lower than that in other region. We estimated water consumption from 2003 to 2012 in Beijing based on water balance method and found that the annual mean ET in urban area was about 654 mm. However, using Surface Energy Balance System (SEBS) model, the annual mean ET in urban area was only 348 mm. We attributed this inconsistence to the impact of anthropogenic heat and quantified this impact on the basis of the night-light maps. Therefore, a new model SEBS-Urban, coupling SEBS model and anthropogenic heat was developed to estimate the ET in urban area. The ET in urban area of Beijing estimated by SEBS-Urban showed a good agreement with the ET from water balance method. The findings from this study highlighted that anthropogenic heat should be included in the surface energy budget for a highly urbanized area.  相似文献   

11.
The integrated application of remote sensing, geographic information system and quantitative analytical modeling can provide scientific and effective methods for monitoring and studying urban heat island, based on land surface temperature (LST) retrieved from thermal infrared channel data of sensors. In this paper, LST is retrieved from Landsat TM6 and ETM + 6 data of Shanghai central city in 1989, 1997, 2000 and 2002, by using the mono-window algorithm. Based on the data, global and local spatial autocorrelation analysis, and geostatistical methods are adopted to quantitatively describe the characteristics of spatial heterogeneity and temporal evolution of land surface thermal landscape at different scales and periods in Shanghai central city, by utilizing exploratory spatial data analysis. Results show that LST field in Shanghai central city tends to fragmentize and complicate with the development of Shanghai, and its global spatial difference becomes greater gradually. The spatial variance pattern of the change of LST field from 1997 to 2002 indicates that the dynamic change of LST presents a tendency of increase in circularity. LST declines distinctly in the districts of Puxi and Pudong near and inside the inner ring road, while it rises obviously outside the central city and near the out ring road. The extrema of temporal change in LST field have a characteristic of spatial clustering. Besides, as the city of Shanghai expands in a circular pattern as a whole, the directional difference of dynamic change of urban surface thermal landscape exists but is not very obvious.  相似文献   

12.
An event‐based model is used to investigate the impact of the spatial distribution of imperviousness on the hydrologic response of a basin characterized by an urban land use. The impact of the spatial distribution of imperviousness is investigated by accounting for its location within the basin when estimating the generated runoff and the hydrologic response. The event model accounts for infiltration and saturation excess; the excess runoff is routed to the outlet using a geomorphologic unit hydrograph. To represent the spatial distribution of rainfall and imperviousness, radar and remotely derived data are used, respectively. To estimate model parameters and analyse their behaviour, a split sample test and parameter sensitivity analysis are performed. From the analysis of parameters, we found the impervious cover tends to increase the sensitivity and storm dependency of channel routing parameters. The calibrated event model is used to investigate the impact of the imperviousness gradient by estimating and comparing hydrographs at internal locations in the basin. From this comparison, we found the urban land use and the spatial variability of rainfall can produce bigger increases in the peak flows of less impervious areas than the most urbanized ones in the basin. To examine the impacts of the imperviousness pattern, scenarios typifying extreme cases of sprawl type and clustered development are used while accounting for the uncertainty in parameters and the initial condition. These scenarios show that the imperviousness pattern can produce significant changes in the response at the main outlet and at locations internal to the overall watershed. Overall, the results indicate the imperviousness pattern can be an influential factor in shaping the hydrologic response of an urbanizing basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper discusses the preliminary results of a study on the vegetation pattern and its relationship with meteorological parameters in and around Istanbul. The study covers an area of over 6800 km2 consisting of urban and suburban centers, and uses the visible and near-infrared bands of Landsat. The spatial variation of the Normalized Difference Vegetation Index (NDVI) and meteorological parameters such as sensible heat flux, momentum flux, relative humidity, moist static energy, rainfall rate and temperature have been investigated based on observations in ten stations in the European (Thracian) and Anatolian parts of Istanbul. NDVI values have been evaluated from the Landsat data for a single day, viz. 24 October 1986, using ERDAS in ten different classes. The simultaneous spatial variations of sensible heat and momentum fluxes have been computed from the wind and temperature profiles using the Monin-Obukhov similarity theory. The static energy variations are based on the surface meteorological observations. There is very good correlation between NDVI and rainfall rate. Good correlation also exists between: NDVI and relative humidity; NDVI, sensible heat flux and relative humidity; NDVI, momentum flux and emissivity; and NDVI, sensible heat flux and emissivity. The study suggests that the momentum flux has only marginal impact on NDVI. Due to rapid urbanization, the coastal belt is characterized by reduced NDVI compared to the interior areas, suggesting that thermodynamic discontinuities considerably influence the vegetation pattern. This study is useful for the investigation of small-scale circulation models, especially in urban and suburban areas where differential heating leads to the formation of heat islands. In the long run, such studies on a global scale are vital to gain accurate, timely information on the distribution of vegetation on the earth’s surface. This may lead to an understanding of how changes in land cover affect phenomena as diverse as the atmospheric CO2 concentrations, the hydrological cycle and the energy balance at the surface-atmosphere interface.  相似文献   

14.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

15.
本文在城市边界层预报模式中耦合了一个单层冠层模式,此模式能够体现城市冠层结构和人为热源对城市热岛的共同作用.通过传统平板模式和城市冠层模式的模拟结果与自动气象站观测资料对比发现,耦合了城市冠层模式的模拟结果与观测资料更为吻合,尤其能够较好地模拟出城市地区夜间地面的气温变化情况.对北京城市区域的模拟结果进行分析,白家庄地区冠层建筑物使得城市地区气温白天下降,夜晚上升,不考虑人为热源作用时,城市冠层使得白家庄站地面气温白天最低下降2.5℃,夜间气温最大升高为4.7℃.针对模拟区域较小的理想算例模拟结果分析表明,城市冠层模式能够很好地模拟城市地区地表能量平衡关系,体现城市冠层对长短波辐射的封截以及热量存储能力,全天平均净辐射通量由传统模式的43.38 W/m2变为84.19 W/m2,热存储通量白天最大值为278.04 W/m2,夜晚最大释放热存储通量为160.35 W/m2.冠层建筑物和人为热源对夜间城市热岛强度的贡献分别为70.65%和29.35%.城市冠层建筑物对夜间城市热岛的形成起决定性作用.  相似文献   

16.
Unplanned land use is mainly arising from previous regional (local) planning policies based on economic growth, which resulted in the misuse of the land. The fertile lands are converted to industrial/urban areas along with forest areas converted to agricultural zones which directly affect the flora and fauna in a negative way. This study aims to identify the land use transformations by using Remote Sensing and GIS due to prior socio-economic return focused politics resulting in environmental degradations. Additionally, this paper presents an analysis of the transformation of fertile lands into industrial/urban zones with respect to Land Capability Classes. The study area is one of the most urbanized and industrialized zones in Turkey. The reason behind this transformation lies solely in the fact that the aforementioned area is quite appealing to industrialization due to its easy access to infrastructure and its compliance with the spatial requirements. Up until now the development plans of the region have been prepared with a socioeconomic agenda promoting the economic growth while disregarding the ecological and environmental balance, which unfortunately boosted the large-scale degradation of the environment. Although the focus area is within a zone suitable for industrialization, this region also takes place within a wide river basin (Ergene River Basin) making it an ideal location for highly productive crop cultivation (LUC Classes 1 to 4), which is a rare commodity in long term.  相似文献   

17.
The processes that control run‐off quantity and quality in urban watersheds are complex and not well understood. Although impervious surface coverage has traditionally been used to examine altered hydrologic response in urban watersheds, several studies suggest that other elements of the urban landscape, particularly those associated with urban infrastructure and the drainage system, play an equally important role. The relative importance of impervious surfaces, stormwater ponds, expansion of the drainage network, and drainage network structures in controlling hydrologic response was examined in the subwatersheds of the Kromma Kill, an urban watershed located in Albany County, NY. In this study, geographic information systems was used to compute geospatial land surface and drainage network properties of 5 Kromma Kill subwatersheds. In these same subwatersheds, water quantity (rainfall and run‐off) and quality (macroinvertebrates, nitrate, total nitrogen, dissolved oxygen, total dissolved solids, and nonpurgable organic carbon) parameters were measured. Strong and significant correlations were identified between land surface and drainage network properties and field observations. Causal relationships were then tested using the Environmental Protection Agency's Stormwater Management Model. Field and model analyses suggest that whereas percent imperviousness is a dominant control on water quality, drainage density and slope are equally important. However, for water quantity, whereas imperviousness is positively correlated with increased run‐off volumes, drainage network properties and slope are the dominant controls on run‐off volumes. Results have important implications for stormwater management plans, especially those aimed at reducing the effective impervious surface coverage of urban watersheds. Reducing the percentage of effective imperviousness in a watershed is not a “one size fits all” solution and can help to meet some management objectives, such as reducing nitrogen concentrations and improving water quality, but may not serve as the most effective, and therefore economical, solution for every management objective including reducing run‐off volumes.  相似文献   

18.
Urban growth along the middle section of the ancient silk-road of China (so called West Yellow River Corridor—He-Xi Corridor) has taken a unique path deviating from what is commonly seen in the coastal China. Urban growth here has been driven by historical heritage, transportation connection between East and West China, and mineral exploitation. However, it has been constrained by water shortage and harsh natural environment because this region is located in arid and semi-arid climate zones. This paper attempts to construct a multi-city agent-based model to explore possible trajectories of regional urban growth along the entire He-Xi Corridor under a severe environment risk, over urban growth under an extreme threat of water shortage. In contrast with current ABM approaches, our model will simulate urban growth in a large administrative region consisting of a system of cities. It simultaneously considers the spatial variations of these cities in terms of population size, development history, water resource endowment and sustainable development potential. It also explores potential impacts of exogenous inter-city interactions on future urban growth on the basis of urban gravity model. The algorithmic foundations of three types of agents, developers, conservationists and regional-planners, are discussed. Simulations with regard to three different development scenarios are presented and analyzed.  相似文献   

19.

Satellite images are used extensively in studying the urban heat island (UHI) phenomenon. We evaluated the suitability of thermal infrared (TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing. Two modified algorithms for retrieving the land surface temperature (LST) from HJ-1B data were tested. The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output. The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data. Of the two algorithms, the mono-window algorithm performed better but further tests are necessary. With more frequent coverage than TM and higher spatial resolution than MODIS, the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.

  相似文献   

20.
Satellite images are used extensively in studying the urban heat island (UHI) phenomenon. We evaluated the suitability of thermal infrared (TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing. Two modified algorithms for retrieving the land surface temperature (LST) from HJ-1B data were tested. The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output. The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data. Of the two algorithms, the mono-window algorithm performed better but further tests are necessary. With more frequent coverage than TM and higher spatial resolution than MODIS, the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号