首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A star will become brighter and brighter with stellar evolution, and the distance of its habitable zone will become larger and larger. Some planets outside the habitable zone of a host star during the main sequence phase may enter the habitable zone of the host star during other evolutionary phases. A terrestrial planet within the habitable zone of its host star is generally thought to be suitable for the existence of life. Furthermore, a rocky moon around a giant planet may be also suitable for life to survive, provided that the planet–moon system is within the habitable zone of its host star. Using Eggleton’s code and the boundary flux of the habitable zone, we calculate the habitable zone of our Solar system after the main sequence phase. It is found that Mars’ orbit and Jupiter’s orbit will enter the habitable zone of the Solar system during the subgiant branch phase and the red giant branch phase, respectively. And the orbit of Saturn will enter the habitable zone of Solar during the He-burning phase for about 137 million years. Life is unlikely at any time on Saturn, as it is a giant gaseous planet. However, Titan, the rocky moon of Saturn, may be suitable for biological evolution and become another Earth during that time. For low-mass stars, there are similar habitable zones during the He-burning phase as our Solar, because there are similar core masses and luminosities for these stars during that phase.  相似文献   

2.
Amos Banin  Jerzy Navrot 《Icarus》1979,37(1):347-350
Organic carbon in oxidizable forms and nitrogen are the only elements among some 40 elements studied that are significantly enriched in terrestrial soils as compared to the crust. This enrichment is due to and reflecting life activity in soils, and is characterized by a unique profile distribution. It is suggested that these facts can constitute the basis for the future chemical-biological search for life in planetary soils.  相似文献   

3.
It has recently been suggested that tidal and radiogenic heating of Europa has led to formation and maintenance of a liquid water ocean overlain by a thin ice crust (S. W. Squyres, R. T. Reynolds, P. M. Cassen, and S. J. Peale (1983). Nature301, 225–226). The present work examines the environmental consequences of such a model with regard to the possible existence on Europa of regions that could satisfy the basic requirements for the survival of known organisms. Appropriate temperatures and long-term environmental stability are implied by the ocean model. The presence of necessary biogenic elements is assumed based on the expected origin of the ocean. The availability of biologically useful energy is assumed to be the principal limiting factor for life on Europa. Possible electrical, thermal, and chemical energy sources are discussed. Calculated resurfacing rates for the active crust model are used to estimate the quantity of photosynthetically active radiation that might reach the proposed ocean through crustal fractures. The amount of biomass that this energy could support, based on Antartic microorganism analogs, is estimated and discussed. Although these calculations cannot determine whether life forms exist or could exist on Europa, they do suggest that there may be regions on Europa, very limited on both space and time, with physical conditions that are within the range of adaptation of life on Earth.  相似文献   

4.
Data on the results of the analysis of the content of re-processed panorama of the VENERA-9 lander are presented. The panorama was transmitted historically for the first time from the surface of Venus in 1975. The low noise of the VENERA-9 data allowed allocating a large object of an unusual regular structure. Earlier, its fuzzy image was repeatedly cited in the literature being interpreted as a ??strange stone??. The complex shape and its other features suggest that the object may be a real habitant of the planet. It is not excluded that another similar object observed was damaged during the VENERA-9 landing. From the evidence of its movement and position of some other similar objects it is concluded that because of the limited energy capacity, the physical action of the Venusian fauna may be much slower than that of the Earth fauna. Another question considered is what sources of energy could be used by life in the conditions of the high temperature oxygenless atmosphere of the planet. It is natural to assume that, like on Earth, the Venusian fauna is heterotrophic and should be based on hypothetical flora, using photosynthesis (based on an unknown high temperature biophysical mechanism).  相似文献   

5.
The design life time of the Hubble Space Telescope will nominally end in 2005. Even though it might be possible to extend the operational life beyond that date it is evident that a successor to Hubble must be planned for now. Based on the report ‘HST and Beyond’ (Dressler 1996)) and aligned with the NASA ‘Origins’ program a study has been initiated to explore options for a telescope with an aperture of larger than 4 meters and possibly as large as 8 meters, optimized for the near infrared (≈ 1-5 micron) to be placed in an orbit far from Earth. The study started in December 1995 and has been proceeding with considerable momentum. At the current time three studies have been completed (NASA in-house, TRW, and Lockheed), which are being used to explore technological and programmatic challenges. The studies are to be merged. It is impressive to see what can be done with existing technology and within the capabilities of existing organizational arrangements. The goal is to complete the study within one year with the goal of entering into phase A as soon as possible. Formal agreements between ESA and NASA will have to be negotiated if Europe is to play a meaningful role in this exercise. Without such agreements, it is clear that European astronomers will not have access to the NGST in the way that they currently enjoy the opportunities provided by the HST. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
One of the most puzzling aspects of Mars is that organics have not yet been found on the surface. The simplest of organic molecules, methane, was detected in the Martian atmosphere for the first time in 2003. The existence and behavior of methane on Mars is of great significance, as methane is a potential biomarker. In this paper we review our current understanding of possible sources and sinks of methane on Mars. We also investigate the role of other trace species in the maintenance and removal of methane from the atmosphere, as well as of other organic material from the surface. In particular, we examine the exogenous, hydrogeochemical—especially serpentinization—and biological sources, for supplying methane to Mars. We suggest that comets and meteorites are the least likely, whereas low-temperature serpentinization is the most plausible of all candidates to explain the methane observations. Nevertheless, it is premature to rule out the role of biology in producing methane on Mars, in view of available data. It is important to note that the loss of methane to surface must also be factored into any “source” scenarios for methane. Ordinary heterogeneous loss process to surface tends to be very slow. On the other hand, a reactive surface could potentially accelerate the destruction of methane. If correct, it would imply that a larger source of methane is present than currently estimated on the basis of photochemical loss alone. A reactive surface can also explain why no organic material has ever been detected on the Martian surface. The surface could become reactive if some oxidizer were present. We suggest that vast quantities of a powerful oxidant, hydrogen peroxide, can be produced in electrochemistry triggered by electrostatic fields generated in the Martian dust devils and dust storms, and in normal saltation process close to the surface. Finally, current observations are inadequate to prove or disprove the existence of life on Mars, now or in the past. The question of extraterrestrial life is a fundamental one, and it should be addressed meticulously on future missions to Mars. Measurements planned on the Mars Science Laboratory (MSL), especially carbon isotopes and chirality, will go a long way in meeting this goal. A brief overview of the MSL Mission and measurements relevant to the question of life and habitability of Mars is also presented in this paper.  相似文献   

7.
A growing body of evidence suggests the operation of life and life processes in comets as well in larger icy bodies in the solar system including Enceladus. Attempts to interpret such data without invoking active biology are beginning to look weak and flawed. The emerging new paradigm is that life is a cosmic phenomenon as proposed by Hoyle and Wickramasinghe (Lifecloud: the Origin of Life in the Galaxy, 1978) and first supported by astronomical spectroscopy (Wickramasinghe and Allen, Nature 287:518, 1980; Allen and Wickramasinghe, Nature 294:239, 1981; Wickramasinghe and Allen, Nature 323:44, 1986). Comets are the transporters and amplifiers of microbial life throughout the Universe and are also, according to this point of view, the carriers of viruses that contribute to the continued evolution of life. Comets brought life to Earth 4.2 billion years ago and they continue to do so. Space extrapolations of comets, Enceladus and possibly Pluto supports this point of view. Impacts of asteroids and comets on the Earth as well as on other planetary bodies leads to the ejection of life-bearing dust and rocks and a mixing of microbiota on a planetary scale and on an even wider galactic scale. It appears inevitable that the entire galaxy will be a single connected biosphere.  相似文献   

8.
Meteorite and asteroid impacts into planet Earth seem rare but over the lifetime of our planet have been relatively frequent. Such collisions (involving very large impactors) have been blamed for mass extinctions during Earth’s history. It has also been postulated that impactors could carry life with them throughout the universe and seed our planet. This is the basis of the theory of panspermia (‘life everywhere’) and suggests that life could be spread throughout the universe by ‘piggy-backing’ on inter-planetary bodies, e.g. asteroids, which then collide with other planets, thus seeding them with life. The shock behaviour of organic matter has an important role to play in helping to inform the feasibility of such theories. An example of a model carrier for life in seeding mechanisms is the plant seed. Here we present the development of an experimental technique in which plant seed samples are shock-loaded and their viability subsequently assessed post-shock. This technique was tested on Lepidium sativum (cress) seed samples. Experimentally, shocked seeds showed positive viability in all tests performed until shocked with a maximum peak shock pressure of ca. 0.8 GPa. These results suggest it is unlikely that the plant seeds tested would be able to survive the extreme conditions on an asteroid during impact, but may be able to survive shock waves that would be generated from such collisions when existing on a planetary body.  相似文献   

9.
The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers, i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth’s Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrous oxide and the ultraviolet radiation field. Atmospheric nitrous oxide columns were enhanced by a factor of 51 for the Proterozoic “Canfield ocean” scenario with 100 times increased nitrous oxide surface emissions. In such a scenario nitrous oxide displays prominent spectral features, so may be more important as a biomarker than previously considered in such cases. The run with “Canfield ocean” nitrous oxide emissions enhanced by a factor of 100 also featured additional surface warming of 3.5 K. Our results suggest that the Proterozoic ozone layer mostly survives the changes in composition which implies that it is indeed a good atmospheric biomarker.  相似文献   

10.
It is proposed that the Kirkwood Gaps are primordial, representing regions where asteroids failed to form by accretion. A brief scenario is presented to indicate the main features of a model for the early history of the asteroids. An analytical treatment is given for the effects of a solar nebula upon the eccentricity-pumping of asteroids, due to secular perturbations and to commensurability-type resonances associated with Jupiter. It is shown that nebular effects promote growth of main-belt asteroids; but in commensurability regions, growth is inhibited. A discussion is given of two related problems: the origin of asteroidal eccentricities and inclinations, and the likelihood that Jupiter suffered major changes in its semimajor axis during its formation. It is suggested that in view of these problems, the present theory should not be taken as necessarily correct, but should be regarded as illustrative of viewpoints which in time may yield a correct theory.  相似文献   

11.
The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life.The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H2O2 and H2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H2O2-H2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H2O2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H2O2-H2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.  相似文献   

12.
Nucleation is a non-equilibrium process: the products of this process are seldom the most thermodynamically stable condensates but are instead those which form fastest. It should therefore not be surprising that grains formed in a circumstellar outflow will undergo some degree of metamorphism if they are annealed or are exposed to a chemically active reagent. Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Various workers have shown that refractory mantles could form on refractory cores by radiation processing of organic ices. A similar process may operate to produce refractory inorganic mantles on grain cores which survived the supernova shocks. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which we hope to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. Some discussion of the physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be attempted based on the limited laboratory data available to date. Suggestions will be made concerning types of experimental data which are needed in order to better understand the processing history of cosmic dust.  相似文献   

13.
We review the evidence that the Earth's atmosphere is regulated by life on the surface so that the probability of growth of the entire biosphere is maximized. Acidity, gas composition including oxygen level, and ambient temperature are enormously important determinants for the distribution of life. We recognize that the earth's atmosphere deviates greatly from that of the other terrestrial planets in particular with respect to acidity, composition, redox potential and temperature history as predicted from solar luminosity. These deviations from predicted steady state conditions have apparently persisted over millions of years. We explore the concept that these anomalies are evidence for a complex planet-wide homeostasis that is the product of natural selection. Possible homeostatic mechanisms that may be further investigated by both theoretical and experimental methods are suggested.  相似文献   

14.
This paper seeks to review the likelihood of unearthing evidence of the existence of life elsewhere in the Universe. Although it has been demonstrated that life can thrive in the severest of conditions on Earth, detecting its presence in similarly habitable zones elsewhere is proving to be an extremely complex issue. There are many reasons for this, the major ones being that the distances involved are vast; the low potential signal to noise ratio, spatial and spectral resolutions arising from planets with biospheres; and biosignals themselves can be misleading. New telescopes with improved technology are on the horizon which will extend our capabilities, but it is still doubtful that any exploration could venture beyond the borders of our galaxy. Moreover, caution needs to be exercised when assessing the signals emitted by biomarkers as these could be produced abiotically. However, if the focus of the search should be concentrated around the area of M dwarf stars then, as we begin to understand the nature of habitable zones, our chances of eventually achieving our goals will be enhanced.  相似文献   

15.
Despite the fact that microbial cells are unlikely to be found in the Martian soil in the near future, this paper is written on the assumption that some of the seasonally varying concentration of Martian methane is due to ongoing methanogenesis. It is first pointed out that life might have arisen on Mars first and been transported to Earth later. A case is made that an icy origin of life is more likely than a hot origin, especially if biomolecules take advantage of the high encounter rates and stability against hydrolysis, and that microorganisms feed on the ions that comprise eutectic solutions in ice. Although certain difficulties are avoided if RNA and DNA grow while adsorbed on clay grains, double strand-breaks of microbial DNA due to alpha radioactivity are a far greater threat to microbial survival on clay or other rock types than in ice. Developing a relation between the rate of microbial metabolism in ice and the experimentally determined rate of production of trapped gases of microbial origin, one can estimate the concentration of methanogens that could account for the methane production rate as a function of temperature of their habitat. The result, of order 1 cell cm−3 in the Martian subsurface, seems an attainable goal provided samples are taken from at least 1 or 2 m below the hostile surface of Mars. Instruments on NASA’s 2011 Mars Science Lab will measure stable isotopes for methane, water, and carbon dioxide, which on Earth served to distinguish abiotic, thermogenic, and microbial origins. Future measurements of chirality of biomolecules might also provide evidence for Martian life.  相似文献   

16.
A new way to measure the departure from thermodynamic equilibrium is proposed based on the departure factor which evaluates the deviation from a Boltzmann level distribution, used by Short and Hauschildt (2005) and others. The way is based on an explicit relationship describing the departure factor as a function of line to continuum source, dynamic temperature and line photon frequency, under three assumptions that the scattering can be neglected, the background continuum can be treated as a Planck function, and finally the complete redistribution can be true. It has the advantage that the departure can be very conveniently evaluated from the spectral analysis with only the radiative transfer involved. Some physical insights are recovered for some extreme cases.Some example calculations of the departure are presented for the quiet Sun, faint solar flare and strong solar flare for the generally used solar chromospheric lines: Hα, Hβ,CaII H, K and triplet. It is revealed that in the case of solar flares, the departure is less than thermodynamic equilibrium along the larger depth range than in the quiet sun due to chromospheric condensation. It becomes hard to distinguish the departures for the different lines of the same atom or ion. It is expected that this investigation can be constructive for studying stellar atmospheres in cases where the three assumptions are close to reality.  相似文献   

17.
Geochemical disequilibrium of Earth's atmosphere is a sign of life. The fact that Earth's atmosphere is just right for life led Lovelock to propose the Gaia hypothesis: life itself regulates the environment on planetary scale in order to maintain habitability. This hypothesis is supported by the so-called Daisyworld parable, which illustrates a possible mechanism for such a self regulation. Here we revisit Daisyworld and challenge some of its conclusions from a closer examination of the model. We find that even within this simple, conceptual model of a Gaian planet there are regimes where climate is less homeostatic than on a dead planet. Furthermore, in other regimes, bistability between two climate states is found to exist due to the presence of life. This indicates that even if the Gaian stability might describe life in some planetary conditions, it need not be generic to all inhabited planets.  相似文献   

18.
Walter MR  Des Marais DJ 《Icarus》1993,101(1):129-143
Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.  相似文献   

19.
Currently we are aware of only one biosphere in the entire Universe, our own. Various ongoing observational programmes are, however, attempting to locate more. These searches for extraterrestrial life are among the most challenging and interesting tasks of modern science. The Universe is immense, and even the distances to the nearest stars are beyond our present capabilities to traverse, so that search strategies must be thought through carefully in terms of how, where and what to search for. Life is undoubtedly more likely in some environments than others, and environmental criteria must be fulfilled for life to arise, survive, evolve and thrive. As search resources are limited we should concentrate our search on habitable zones that are suitable for the kind of life we can most easily recognise, in other words, searches should be guided by our own biosphere.  相似文献   

20.
The effect of rotation on the observed colours of stars has been considered as a possible cause for the blue straggler phenomenon in clusters listed by Mermilliod (1982). It appears that this phenomenon is definitely not real in the case of the late B and early A spectral type blue stragglers that are intrinsic slow rotators. Among clusters containing the early B type blue stragglers it is found that the anomalous position of the stragglers in NGC 6633, NGC 6475 and NGC 2516 cannot be accounted for by rotation effects alone. on leave from Assumption College, Changanacherry, Kerala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号