首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a set of global climate change scenarios that have been used in a series of studies investigating the global impacts of climate change on several environmental systems and resources — ecosystems, food security, water resources, malaria and coastal flooding. These scenarios derive from modelling experiments completed by the Hadley Centre over the last four years using successive versions of their coupled ocean–atmosphere global climate model. The scenarios benefit from ensemble simulations (made using HadCM2) and from an un-flux-corrected experiment (made using HadCM3), but consider only the effects of increasing greenhouse gas concentrations. The effects of associated changes in sulphate aerosol concentrations are not considered. The scenarios are presented for three future time periods — 30-year means centred on the 2020s, the 2050s and the 2080s — and are expressed with respect to the mean 1961–1990 climate. A global land observed climatology at 0.5° latitude/longitude resolution is used to describe current climate. Other scenario variables — atmospheric CO2 concentrations, global-mean sea-level rise and non-climatic assumptions relating to population and economy — are also provided. We discuss the limitations of the created scenarios and in particular draw attention to sources of uncertainty that we have not fully sampled.  相似文献   

2.
This study used a quadratic programming sector model to assess the integrated impacts of climate change on the agricultural economy of Egypt. Results from a dynamic global food trade model were used to update the Egyptian sector model and included socio-economic trends and world market prices of agricultural goods. In addition, the impacts of climate change from three bio-physical sectors – water resources, crop yields, and land resources – were used as inputs to the economic model. The climate change scenarios generally had minor impacts on aggregated economic welfare (sum of Consumer and Producer Surplus or CPS), with the largest reduction of approximately 6 percent. In some climate change scenarios, CPS slightly improved or remained unchanged. These scenarios generally benefited consumers more than producers, as world market conditions reduced the revenue generating capacity of Egyptian agricultural exporters but decreased the costs of imports. Despite increased water availability and only moderate yield declines, several climate change scenarios showed producers being negatively affected by climate change. The analysis supported the hypothesis that smaller food importing countries are at a greater risk to climate change, and impacts could have as much to do with changes in world markets as with changes in local and regional biophysical systems and shifts in the national agricultural economy.  相似文献   

3.
U.S. Country Studies supported analyses of climate change impacts on water resources have been completed or are underway in the following Central and Eastern European nations: Czech Republic, Slovakia, Poland, Romania, Estonia, Russian Federation, and the Ukraine. Climate change impacts on the hydrologic resources of these countries is being performed at the river basin scale using monthly water balance models using GCM-based climate scenarios. The authors have performed a regional analysis of climate change impacts on the Hydrologic Resources of Europe using the Turc Annual Model. The regional analysis was done with GIS methodolgies using regional climate databases. The regional results were compared to the U.S. Country Studies hydrologic assessmnent results to validiate the use of this simplified methodolgy for making regional climate change assessment. Results from three countries showed acceptable performace of the annual approach . Using GCM-based climate scenarios regional analysis of potential climate change impacts on the hydrologic resources of Europe was conducted and national and regional results are presented.  相似文献   

4.
The Consequences of CO2 Stabilisation for the Impacts of Climate Change   总被引:1,自引:0,他引:1  
This paper reports the main results of an assessment of the global-scale implications of the stabilisation of atmospheric CO2 concentrations at 750 ppm (by 2250) and 550 ppm (by 2150), in relationto a scenario of unmitigated emissions. The climate change scenarios were derived from simulation experiments conducted with the HadCM2 global climate model and forced with the IPCC IS92a, S750 and S550 emissions scenarios. The simulated changes in climate were applied to an observed global baseline climatology, and applied with impacts models to estimate impacts on natural vegetation, water resources, coastal flood risk and wetland loss, crop yield and food security, and malaria. The studies used a single set of population and socio-economic scenarios about the future that are similar to those adopted in the IS92a emissions scenario.An emissions pathway which stabilises CO2 concentrations at 750 ppmby the 2230s delays the 2050 temperature increase under unmitigated emissions by around 50 years. The loss of tropical forest and grassland which occurs by the 2050s under unmitigated emissions is delayed to the 22nd century, and the switch from carbon sink to carbon source is delayed from the 2050s to the 2170s. Coastal wetland loss is slowed. Stabilisation at 750 ppm generally has relatively little effect on the impacts of climate change on water resource stress, and populations at risk of hunger or falciparum malaria until the 2080s.A pathway which stabilises CO2 concentrations at 550 ppm by the 2170s delays the 2050 temperature increase under unmitigated emissions by around 100 years. There is no substantial loss of tropical forest or grassland, even by the 2230s, although the terrestrial carbon store ceases to act as a net carbon sink by around 2170 (this time because the vegetation has reached a new equilibrium with the atmosphere). Coastal wetland loss is slowed considerably, and the increase in coastal flood risk is considerably lower than under unmitigated emissions. CO2 stabilisation at 550 ppm reduces substantially water resource stress, relative to unmitigated emissions, but has relatively little impact on populations at risk of falciparum malaria, and may even cause more people to be at risk of hunger. While this study shows that mitigation avoids many impacts, particularly in the longer-term (beyond the 2080s), stabilisation at 550 ppm appears to be necessary to avoid or significantly reduce most of the projected impacts in the unmitigated case.  相似文献   

5.
We examined the impacts on U.S. agriculture of transient climate change assimulated by 2 global general circulation models focusing on the decades ofthe 2030s and 2090s. We examined historical shifts in the location of cropsand trends in the variability of U.S. average crop yields, finding thatnon-climatic forces have likely dominated the north and westward movement ofcrops and the trends in yield variability. For the simulated future climateswe considered impacts on crops, grazing and pasture, livestock, pesticide use,irrigation water supply and demand, and the sensitivity to international tradeassumptions, finding that the aggregate of these effects were positive for theU.S. consumer but negative, due to declining crop prices, for producers. Weexamined the effects of potential changes in El Niño/SouthernOscillation (ENSO) and impacts on yield variability of changes in mean climateconditions. Increased losses occurred with ENSO intensity and frequencyincreases that could not be completely offset even if the events could beperfectly forecasted. Effects on yield variability of changes in meantemperatures were mixed. We also considered case study interactions ofclimate, agriculture, and the environment focusing on climate effects onnutrient loading to the Chesapeake Bay and groundwater depletion of theEdward's Aquifer that provides water for municipalities and agriculture to theSan Antonio, Texas area. While only case studies, these results suggestenvironmental targets such as pumping limits and changes in farm practices tolimit nutrient run-off would need to be tightened if current environmentalgoals were to be achieved under the climate scenarios we examined  相似文献   

6.
During this century global warming will lead to changes in global weather and climate, affecting many aspects of our environment. Agriculture is the sector of the United States economy most likely to be directly impacted by climatic changes. We have examined potential changes in dryland agriculture (Part 3) and in water resources necessary for crop production (Part 4) in response to a set of climate change scenarios. In this paper we assess to what extent, under these same scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the US. In addition, we assess the overall impacts of changes in water supply on national grain production. We apply the 12 climate change scenarios described in Part 1 to the water resources and crop growth simulation models described in Part 2 for the conterminous United States. Drawing on data from Parts 3 and 4 we calculate what the aggregate national production would be in those regions in which grain crops are currently produced by applying irrigation where needed and water supplies allow. The total amount of irrigation water applied to crops declines under all climate change scenarios employed in this study. Under certain of the scenarios and in particular regions, precipitation decreases so much that water supplies are too limited; in other regions precipitation becomes so plentiful that little value is derived from irrigation. Nationwide grain crop production is greater when irrigation is applied as needed. Under irrigation, less corn and soybeans are produced under most of the climate change scenarios than is produced under baseline climate conditions. Winter wheat production under irrigation responds significantly to elevated atmospheric carbon dioxide concentrations [CO2] and appears likely to increase under climate change.  相似文献   

7.
C. Tague  L. Seaby  A. Hope 《Climatic change》2009,93(1-2):137-155
Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key disturbances in semi-arid environments, and few studies have explored the potential interactions among changes in climate, vegetation dynamics, hydrology, elevated atmospheric CO2 concentrations and fire. We model ecosystem productivity, evapotranspiration, and summer streamflow under a range of temperature and precipitation scenarios using RHESSys, a spatially distributed model of carbon–water interactions. We examine the direct impacts of temperature and precipitation on vegetation productivity and impacts associated with higher water-use efficiency under elevated atmospheric CO2. Results suggest that for most climate scenarios, biomass in chaparral-dominated systems is likely to increase, leading to reductions in summer streamflow. However, within the range of GCM predictions, there are some scenarios in which vegetation may decrease, leading to higher summer streamflows. Changes due to increases in fire frequency will also impact summer streamflow but these will be small relative to changes due to vegetation productivity. Results suggest that monitoring vegetation responses to a changing climate should be a focus of climate change assessment for California MTEs.  相似文献   

8.
This study examines how uncertainty associated with the spatial scale of climate change scenarios influences estimates of soybean and sorghum yield response in the southeastern United States. We investigated response using coarse (300-km, CSIRO) and fine (50-km, RCM) scale climate change scenarios and considering climate changes alone, climate changes with CO2 fertilization, and climate changes with CO2 fertilization and adaptation. Relative to yields simulatedunder a current, control climate scenario, domain-wide soybean yield decreased by 49% with the coarse-scale climate change scenario alone, and by26% with consideration for CO2 fertilization. By contrast, thefine-scale climate change scenario generally exhibited higher temperatures and lower precipitation in the summer months resulting in greater yield decreases (69% for climate change alone and 54% with CO2fertilization). Changing planting date and shifting cultivars mitigated impacts, but yield still decreased by 8% and 18% respectively for the coarse andfine climate change scenarios. The results were similar for sorghum. Yield decreased by 51%, 42%, and 15% in response to fine-scaleclimate change alone, CO2 fertilization, and adaptation cases, respectively– significantly worse than with the coarse-scale (CSIRO) scenarios. Adaptation strategies tempered the impacts of moisture and temperature stress during pod-fill and grain-fill periods and also differed with respect to the scale of the climate change scenario.  相似文献   

9.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

10.
X-C Zhang 《Climatic change》2007,84(3-4):337-363
Spatial downscaling of climate change scenarios can be a significant source of uncertainty in simulating climatic impacts on soil erosion, hydrology, and crop production. The objective of this study is to compare responses of simulated soil erosion, surface hydrology, and wheat and maize yields to two (implicit and explicit) spatial downscaling methods used to downscale the A2a, B2a, and GGa1 climate change scenarios projected by the Hadley Centre’s global climate model (HadCM3). The explicit method, in contrast to the implicit method, explicitly considers spatial differences of climate scenarios and variability during downscaling. Monthly projections of precipitation and temperature during 1950–2039 were used in the implicit and explicit spatial downscaling. A stochastic weather generator (CLIGEN) was then used to disaggregate monthly values to daily weather series following the spatial downscaling. The Water Erosion Prediction Project (WEPP) model was run for a wheat–wheat–maize rotation under conventional tillage at the 8.7 and 17.6% slopes in southern Loess Plateau of China. Both explicit and implicit methods projected general increases in annual precipitation and temperature during 2010–2039 at the Changwu station. However, relative climate changes downscaled by the explicit method, as compared to the implicit method, appeared more dynamic or variable. Consequently, the responses to climate change, simulated with the explicit method, seemed more dynamic and sensitive. For a 1% increase in precipitation, percent increases in average annual runoff (soil loss) were 3–6 (4–10) times greater with the explicit method than those with the implicit method. Differences in grain yield were also found between the two methods. These contrasting results between the two methods indicate that spatial downscaling of climate change scenarios can be a significant source of uncertainty, and further underscore the importance of proper spatial treatments of climate change scenarios, and especially climate variability, prior to impact simulation. The implicit method, which applies aggregated climate changes at the GCM grid scale directly to a target station, is more appropriate for simulating a first-order regional response of nature resources to climate change. But for the site-specific impact assessments, especially for entities that are heavily influenced by local conditions such as soil loss and crop yield, the explicit method must be used.  相似文献   

11.
Climate changes may have great impacts on the fragile agro-ecosystems of the Loess Plateau of China, which is one of the most severely eroded regions in the world. We assessed the site-specific impacts of climate change during 2010?C2039 on hydrology, soil loss and crop yields in Changwu tableland region in the Loess Plateau of China. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO-Mk2 and HadCM3) under three emission scenarios (A2, B2 and GGa) were used. A simple spatiotemporal statistical method was used to downscale GCMs monthly grid outputs to station daily weather series. The WEPP (Water and Erosion Prediction Project) model was employed to simulate the responses of agro-ecosystems. Compared with the present climate, GCMs projected a ?2.6 to 17.4% change for precipitation, 0.6 to 2.6°C and 0.6 to 1.7°C rises for maximum and minimum temperature, respectively. Under conventional tillage, WEPP predicted a change of 10 to 130% for runoff, ?5 to 195% for soil loss, ?17 to 25% for wheat yield, ?2 to 39% for maize yield, ?14 to 18% for plant transpiration, ?8 to 13% for soil evaporation, and ?6 to 9% for soil water reserve at two slopes during 2010?C2039. However, compared with conventional tillage under the present climate, conservation tillage would change runoff by ?34 to 71%, and decrease soil loss by 26 to 77% during 2010?C2039, with other output variables being affected slightly. Overall, climate change would have significant impacts on agro-ecosystems, and adoption of conservation tillage has great potential to reduce the adverse effects of future climate changes on runoff and soil loss in this region.  相似文献   

12.
Are there "thresholds" in greenhouse gas (GHG) concentrations above which associated climate change impacts become economically, socially or environmentally unacceptable? If thresholds exist, then emissions might be limited in such a way that GHG concentrations are not exceeded. Environmental, social, and economic systems should be examined in order to determine these threshold levels. This paper addressed the potential impacts of climate change on the water resources of the Nile River and associated impacts on the Egyptian economy through the use of a recursively dynamic general equilibrium model. The model was used to examine both economy-wide and sectoral impacts, and impacts on social and national policy indicators under various economic growth and climate change scenarios. Macro-economic indicators such as Gross Domestic Product (GDP) showed that strict economic thresholds, characterized by discontinuities in the response function, did not occur. This was because autonomous economic adjustments generated a smooth socioeconomic transition over the 70-year simulation period. The economy underwent a gradual structural transformation, as capital and resources were moved from cropped agricultural to both the livestock and the non-agricultural sectors. Under "wet" climate scenarios, surplus water beyond 75 billion cubic meters (BCM) remained unused, as the marginal value of water dropped to zero and other resource constraints limited agricultural growth. For drier scenarios (below 75 BCM), water was a constraint to agricultural production into the 21 st century, as resources were diverted to less water demanding crops and the livestock and non-agricultural sectors. The reduced water scenarios showed agriculture declining in its total share of GDP, burdening the agricultural wage earner. Egypt increased its dependence on imports to meet food demand, dramatically decreasing grain self-sufficiency, while increasing protein self-sufficiency. If national policy requires a certain level of food self-sufficiency, then these metrics could be used in defining policy-based thresholds.  相似文献   

13.
Adaptation of agriculture to climate change   总被引:2,自引:1,他引:2  
Preparing agriculture for adaptation to climate change requires advance knowledge of how climate will change and when. The direct physical and biological impacts on plants and animals must be understood. The indirect impacts on agriculture's resource base of soils, water and genetic resources must also be known. We lack such information now and will, likely, for some time to come. Thus impact assessments for agriculture can only be conjectural at this time. How-ever, guidance can be gotten from an improved understanding of current climatic vulnerabilities of agriculture and its resource base, from application of a realistic range of climate change scenarios to impact assessment, and from consideration of the complexity of current agricultural systems and the range of adaptation techniques and policies now available and likely to be available in the future.  相似文献   

14.
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.  相似文献   

15.
The specter of climate change threatens fresh water resources along the U.S.–Mexico border. Water managers and planners on both sides of the border are promoting desalination—the conversion of seawater or brackish groundwater to fresh water—as an adaptation response that can help meet growing water demands and buffer against the negative impacts of climate change on regional water supplies. However, the uneven distribution of costs and benefits of this expensive, energy-intensive technology is likely to exacerbate existing social inequalities in the border zone. In this paper, we examine the discourses employed in the construction of the climate problem and proposed solutions. We focus our analysis on a proposed Arizona–Sonora binational desalination project and use insights from risk and hazards literature to analyze how, why, and to what effect desalination is emerging as a preferred climate change adaptation response. Our risk analysis shows that while desalination technology can reduce some vulnerabilities (e.g., future water supply), it can also introduce new vulnerabilities by compounding the water-energy nexus, increasing greenhouse gas emissions, inducing urban growth, producing brine discharge and chemical pollutants, shifting geopolitical relations of water security, and increasing water prices. Additionally, a high-tech and path-dependent response will likely result in increased reliance on technical expertise, less opportunity for participatory decision-making and reduced flexibility. The paper concludes by proposing alternative adaptation responses that can offer greater flexibility, are less path dependent, incorporate social learning, and target the poorest and most vulnerable members of the community. These alternatives can build greater adaptive capacity and ensure equity.  相似文献   

16.
The crop model CERES-Barley was used to assess the impacts of increased concentration of atmospheric CO2 on growth and development of the most important spring cereal in Central and Western Europe, i.e., spring barley, and to examine possible adaptation strategies. Three experimental regions were selected to compare the climate change impacts in various climatic and pedological conditions. The analysis was based on multi-year crop model simulations run with daily weather series obtained by stochastic weather generator and included two yield levels: stressed yields and potential yields. Four climate change scenarios based on global climate models and representing 2 × CO2 climate were applied. Results: (i) The crop model is suitable for use in the given environment, e.g., the coefficient of determination between the simulated and experimental yields equals 0.88. (ii) The indirect effect related to changed weather conditions is mostly negative. Its magnitude ranges from ?19% to +5% for the four scenarios applied at the three regions. (iii) The magnitude of the direct effect of doubled CO2 on the stressed yields for the three test sites is 35–55% in the present climate and 25–65% in the 2 × CO2 climates. (iv) The stressed yields would increase in 2 × CO2 conditions by 13–52% when both direct and indirect effects were considered. (v) The impacts of doubled CO2 on potential yields are more uniform throughout the localities in comparison with the stressed yields. The magnitude of the indirect and direct effects ranges from ?1 to ?9% and from +31 to +33%, respectively. Superposition of both effects results in 19–30% increase of the potential yields. (vi) Application of the earlier planting date (up to 60 days) would result in 15–22% increase of the yields in 2 × CO2 conditions. (vii) Use of a cultivar with longer vegetation duration would bring 1.5% yield increase per one extra day of the vegetation season. (viii) The initial water content in the soil water profile proved to be one of the key elements determining the spring barley yield. It causes the yields to increase by 54–101 kg.ha?1 per 1% increase of the available soil water content on the sowing day.  相似文献   

17.
Micronutrient deficiencies constitute a pressing public health concern, especially in developing countries. As a dense source of bioavailable nutrients, aquatic foods can help alleviate such deficiencies. Developing aquaculture that provides critical micronutrients without sacrificing the underlying environmental resources that support these food production systems is therefore essential. Here, we address these dual challenges by optimizing nutrient supply while constraining the environmental impacts from aquaculture. Using life cycle assessment and nutritional data from Indonesia, a top aquaculture producer, we sought to identify aquaculture systems that increase micronutrient supplies and reduce environmental impacts (e.g., habitat destruction, freshwater pollution, and greenhouse gas emissions). Aquaculture systems in Indonesia vary more by environmental impacts (e.g. three order of magnitude for fresh water usage) than by nutritional differences (approximately ± 50% differences from mean relative nutritional score). Nutritional-environmental tradeoffs exist, with no single system offering a complete nutrition-environment win–win. We also find that previously proposed future aquaculture paths suboptimally balance nutritional and environmental impacts. Instead, we identify optimized aquaculture production scenarios for 2030 with nutrient per gram densities 105–320% that of business-as-usual production and with environmental impacts as low as 25% of those of business-as-usual. In these scenarios Pangasius fish (Pangasius hypophthalmus) ponds prove desirable due to their low environmental impacts, but average relative nutrient score. While the environmental impacts of the three analyzed brackish water systems range from average to high compared to other aquaculture systems, their nutritional attributes render them necessary when maximizing all nutrients except vitamin A. Common carp (Cyprinus carpio) ponds also proved essential in maximizing zinc and omega n-3, while Tilapia (Oreochromis niloticus) cages were necessary in optimizing the production of calcium and vitamin A. These optimal aquaculture strategies also reduce business-as-usual demand for wild fish-based feed by 0–30% and mangrove expansion by 0–75% with no additional expansion into inland open waters and freshwater ponds. As aquaculture production expands globally, optimization presents a powerful opportunity to reduce malnutrition rates at reduced environmental impacts. The proposed reorientation promotes UN sustainable development goals 2 (zero hunger), 3 (health), 13 (climate action) and 14 (life under water) and requires concerted and targeted policy changes.  相似文献   

18.
While previous studies have focused on impacts of average climate change on Russian agriculture and water resources, this study takes into account the impact of changing frequency and spatial heterogeneity of extreme climate events, and the reliance of most of Russia on a few food producing regions. We analyze impacts of the IPCC A2 and B2 climate scenarios with the use of the Global Assessment of Security (GLASS) model (containing the Global Agro-Ecological Zones (GAEZ) crop production model and the Water-Global Assessment and Prognosis (WaterGAP 2) water resources model). As in previous studies we find that decreased crop production in some Russian regions can be compensated by increased production in others resulting in relatively small average changes. However, a different perspective on future risk to agriculture is gained by taking into account a change in frequency of extreme climate events. Under climate normal conditions it is estimated that “food production shortfalls” (a year in which potential production of the most important crops in a region is below 50% of its average climate normal production, taking into account production in food-exporting regions) occur roughly 1–3 years in each decade. This frequency will double in many of the main crop growing areas in the 2020s, and triple in the 2070s. The effects of these shortfalls are likely to propagate throughout Russia because of the higher likelihood of shortfalls occurring in many crop export regions in the same year, and because of the dependence of most Russian regions on food imports from a relatively few main crop growing regions. We estimate that approximately 50 million people currently live in regions that experience one or more shortfalls each decade. This number may grow to 82–139 million in the 2070s. The assessment of climate impacts on water resources indicates an increase in average water availability in Russia, but also a significantly increased frequency of high runoff events in much of central Russia, and more frequent low runoff events in the already dry crop growing regions in the South. These results suggest that the increasing frequency of extreme climate events will pose an increasing threat to the security of Russia's food system and water resources.  相似文献   

19.
We investigated the effect of two different spatial scales of climate change scenarios on crop yields simulated by the EPIC crop model for corn, soybean, and wheat, in the central Great Plains of the United States. The effect of climate change alone was investigated in Part I. In Part II (Easterling et al., 2001) we considered the effects ofCO2 fertilization effects and adaptation in addition to climate change. The scenarios were formed from five years of control and 2 ×CO2 runs of a high resolution regional climate model (RegCM) and the same from an Australian coarse resolution general circulation model (GCM), which provided the initial and lateral boundary conditions for the regional model runs. We also investigated the effect of two different spatial resolutions of soil input parameters to the crop models. We found that for corn and soybean in the eastern part of the study area, significantly different mean yield changes were calculated depending on the scenario used. Changes in simulated dryland wheat yields in the western areas were very similar, regardless of the scale of the scenario. The spatial scale of soils had a strong effect on the spatial variance and pattern of yields across the study area, but less effect on the mean aggregated yields. We investigated what aspects of the differences in the scenarios were most important for explaining the different simulated yield responses. For instance, precipitation changes in June were most important for corn and soybean in the eastern CSIRO grid boxes. We establish the spatial scale of climate changescenarios as an important uncertainty for climate change impacts analysis.  相似文献   

20.
Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2 °C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5 %. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号