首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some physical and chemical investigations of the lower reaches of Tigris and Euphrates as well as the upper reaches of Shatt al-Arab in Iraq were studied. The transparency showed local and seasonal variations. The Secchi values were markedly low due to the relative turbidity of Tigris and the maximum Secchi-disc values observed coincide with more sedimentation in Euphrates. The lowest Secchi values registered in April are attributed to the considerable increase in the amounts of suspended matter carried by the floods of the rivers. The slight decrease of water temperature with depth is related to the mixing processes. Considerable seasonal variations of air and water temperatures were observed. The lowest temperatures were recorded in January (winter) and the highest in August (summer). The temperatures gave considerably high values in April and October, since the region studied lies within an arid climate. Seasonal variations of pH were recorded and attributed to physical and biological changes in the region studied. The relatively high average pH values found in August and October give a good evidence for the phytoplankton abundance under better environmental conditions. The increase of the chlorosity content at the stations A, B, II and IV is mainly due to the effect of the brackish water from Hor Hammar on these localities. The dissolved oxygen showed remarkable seasonal variations and gave the highest average values in January and the lowest in August. It was concluded that the source of dissolved oxygen in the region studied is more related to the atmosphere than the photosynthetic activity, and the mixing processes as well as the water temperatures are the main factors affecting its concentration and distribution. The results obtained show strongly that the water characteristics at the stations I, II and III were different. This is a clear evidence that Tigris joins Euphrates at Qurna forming Shatt al-Arab.  相似文献   

2.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

3.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
采用天然河道实测资料分析和实验室试验分析方法对伊拉克底格里斯河摩苏尔55km河段的河道床沙组成进行研究,目的是分析河床表层及底层泥沙组成,以及该河段的床沙粗化条件.通过收集天然河道的床沙资料,对沙样进行实验室分析,结果表明:底格里斯河摩苏尔河段床沙已形成粗化:一般河床表层泥沙颗粒大小分布随着河段距离的增加而减小,床沙接近于均勻分布,表层床沙沙样颗粒中圆盘形、 球形、柱形和片状分别为48.34%、25.2%、15.34%和11.08%.在床沙的表层和底层泥沙以粗沙砾石为主,分别为74%和36%.  相似文献   

5.
The water resource provided by lake basins in the western desert of Iraq is important for human occupation of areas outside the Tigris-Euphrates floodplain, both in the past and into the future. This paper presents the first geomorphological and geochronological study of the date of formation of the Najaf Sea and the only such study of any lake basin to the west of Mesopotamia. Geomorphological shoreline features and a palaeochannel linking to the Euphrates were studied and dated using optically stimulated luminescence (OSL) and radiocarbon dating. Provenance was determined using heavy mineral analysis. Past environments in the Najaf Sea were reconstructed by molluscan analysis. The earliest OSL ages date from c. 30 000 and 22 000 years ago and seem to predate lake formation. Younger OSL ages date the highest lake level at c. 19 m asl to between 1620–1760 AD (base) to 1906–1974 AD (near surface). The radiocarbon ages are affected by a freshwater reservoir effect, but the maximum ages recorded for either of the c. 15 m and c. 17 m asl shorelines are c. 800 cal. BC. This predates the first archaeological sites in the Najaf basin and is similar to maximum ages of c. 850 and c. 1100 cal. BC from the associated palaeochannel. This timing does not seem to be linked to a humid climate event. We therefore conclude that the establishment of the Najaf Sea in the Najaf basin occurred as a result of an avulsion event within the Euphrates system that diverted flow to the basin. The trigger for this avulsion event likely related to rapid sediment accumulation and may have been either autogenic or driven by human activity. This study therefore suggests that Najaf Sea formation facilitated human expansion beyond the Tigris- Euphrates floodplain and occurred due to avulsion of the Euphrates.  相似文献   

6.
Information on regional snow water equivalent (SWE) is required for the management of water generated from snowmelt. Modeling of SWE in the mountainous regions of eastern Turkey, one of the major headwaters of Euphrates–Tigris basin, has significant importance in forecasting snowmelt discharge, especially for optimum water usage. An assimilation process to produce daily SWE maps is developed based on Helsinki University of Technology (HUT) model and AMSR‐E passive microwave data. The characteristics of the HUT emission model are analyzed in depth and discussed with respect to the extinction coefficient function. A new extinction coefficient function for the HUT model is proposed to suit models for snow over mountainous areas. Performance of the modified model is checked against the original, other modified cases and ground truth data covering the 2003–2007 winter periods. A new approach to calculate grain size and density is integrated inside the developed data assimilation process. An extensive validation was successfully performed by means of snow data measured at ground stations during the 2008–2010 winter periods. The root mean square error of the data set for snow depth and SWE between January and March of the 2008–2010 periods compared with the respective AMSR‐E footprints indicated that errors for estimated snow depth and predicted SWE values were 16.92 cm and 40.91 mm, respectively, for the 3‐year period. Validation results were less satisfactory for SWE less than 75.0 mm and greater than 150.0 mm. An underestimation for SWE greater than 150 mm could not be resolved owing to the microwave signal saturation that is observed for dense snowpack. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Quantitative estimates of the groundwater depletion and droughts in the Tigris‐Euphrates Basin (TEB) can be useful for sustainably managing its water resources. Here, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to infer the monthly changes in the total water storage of the TEB from January 2003 to December 2015. Additionally, the data of altimetry and output from land surface models are used to remove the contributions from lake water changes and other hydrological factors to obtain the total groundwater depletion (TGWD), human‐driven groundwater depletion (HGWD), and climate‐driven groundwater depletion. We conclude that an alarming rate of decrease in the total water storage and the loss of TGWD have an “accelerating” trend, as the trend during 2007 to 2015 was 3.6 times that during 2003 to 2006. Moreover, the HGWD is 116.09 Gt, which accounts for 98% of the TGWD. Finally, the total storage deficit index (TSDI) is derived from the GRACE data to characterize the drought of the TEB. The results show that TSDI agrees well with the actual drought rather than the Palmer drought severity index (PDSI) and that the TEB has been undergoing a severe drought since September 2007 according to both the TSDI and PDSI. The research in this study provides an effective and unique method for understanding the hydrological processes and sustainable use of water resources in regions or countries with little data, which is essential for more efficient, sustainable, and cross‐boundary cooperative water resource management.  相似文献   

8.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

9.
Izvestiya, Physics of the Solid Earth - Abstract—The significant deviation of the regime of the main earthquakes from the stationary Poisson process is shown for the regional catalog of...  相似文献   

10.
Gene expression programing (GEP) is used to estimate the suspended sediment yield (SSY) in Euphrates River. SSY is considered to be a function of (i) discharge and (ii) time‐lagged discharge and SSY. The proposed models were trained to extrapolate natural stream data collected from five stations in Middle Euphrates Basin. A detailed sensitivity analysis is done to select the time‐lagged discharge and sediment yield variables. GEP implicitly evaluates the contribution of each independent variable on the fitness of candidate solution and eliminates the variable having no contribution. In this study, all input variables are observed to be included in the proposed GEP models, which prove the significance of each variable. Also, standard and modified sediment rating curves and regression‐based formulae are developed for the five stations. In verification, the estimations of GEP formulae agree well with the measured ones. The GEP models are evaluated by the results of the rating curves and regression formulae. In general, the GEP formulae give better results compared to the rating curves and regression‐based formulae.  相似文献   

11.
The characterisation of natural stream conditions is the first important step to analyse ecological quality of streams in the Euphrates basin. We found that the community indices correspond to very good ecological conditions in five natural streams of that region. The macroinvertebrates composition differed significantly between September and May. Number of taxa and Shannon index were significantly higher in autumn than in spring. FPOM and biofilm were the most relevant basal resources of benthic invertebrates.  相似文献   

12.
A brief review of studies of the hydrological regime of the Sea of Azov and approaches to assessing the average salinity—a key indicator of the state of its ecosystem is given. A database of salinity measurements at 47409 oceanographic stations over hundred years (from 1913 to 2014) were used to evaluate the sea-averaged mean annual salinity. The obtained values of the average salinity were found to differ from those published before because of the different approaches used to its calculation and different volumes of data involved. The difference was most significant for Taganrog Bay because of the high variability of its hydrological regime. Anomalies of the average salinity over period 1922–2014 were constructed, and the start of one more period of salinity increase in the Sea of Azov was recognized.  相似文献   

13.
Abstract

The present work describes the development and calibration of a mathematical model for the Tigris River downstream of Sadam Dam. The river stretch studied is 75 km long extending from the Sadam Dam to Mosul city. The field work was conducted during the period from July to September 1986. Water samples were collected bimonthly from specified sampling points. The model simulates river assimilation capacity for a variety of water quality parameters by performing the numerical solution of a set of differential equations representing the aquatic system under steady state conditions. Generally, a noticeable increase in the concentrations of water quality parameters arising from water impoundment was observed. A good agreement was found between measured and simulated concentrations of water quality parameters. However, discrepancies noticed during model calibration were attributed to the assumptions adopted in the model formulation, to lack of field data, and to exclusion of some variables in model building.  相似文献   

14.
The results of long-term observations are used to analyze the seasonal and year-to-year variations of the abundance and biomass of planktonic algae in connection with the seasonal dynamics of water level in the Kuibyshev Reservoir. The dynamics of level regime in the reservoir in combination with climate conditions are a determining factor for phytoplankton development. The adverse effects of eutrophication (in particular, water blooming) can be reduced by maintaining an optimal water level in the reservoir—not below the normal water level (53 m BS) in the summer.  相似文献   

15.
—On May 25th, 1992, an M s = 6.9 earthquake occurred off the southwestern tip of Cuba, along the boundary between the Caribbean and North American plates. This earthquake was the largest to strike southern Cuba since 1917 and the largest ever recorded in that region by global seismic networks. It is therefore a key element for our understanding of the tectonic and kinematic regime along the northern Caribbean plate boundary. In order to test the previously proposed source parameters of the Cabo Cruz earthquake and to better constrain its focal mechanism, we derived a new set of source parameters from unfiltered broad-band teleseismic records. We used a hybrid ray tracing method that allows us to take into account propagation effects of seismic waves in a realistic crustal model around the source. Our solution is consistent with the long-period focal mechanism solution of Virieux et al. (1992). Our solution also models the higher frequency crustal and water layer phases. The primarily strike-slip focal mechanism has a small thrust component. Its shows an east-west trending nodal plane dipping 55° to the north that we interpret as the rupture plane since it corresponds to the geometry of the major active fault in that area. The displacement on this plane is a left-lateral strike-slip combined with a small amount of southward thrust. The result is in good agreement with the active tectonic structures observed along the Oriente fault south of Cuba. The small thrust component demonstrates that, contrary to prior belief, the transpressive regime extends along this whole segment of the Caribbean/North American plate boundary. Together with historical seismicity, it suggests that most of the stress accumulated by the Caribbean/North American plate motion is released seismically along the southern Cuban margin during relatively few but large earthquakes.  相似文献   

16.
The seismological data in the area of induced seismicity in the region of the Nurek reservoir are analyzed. The analysis is based on the developed database for the earthquakes that occurred from 1955 to 1989 and is aimed at finding the regularities in the variations of the parameters of the transitional seismic regime caused by filling a reservoir. These parameters include the b-value—the slope of the graph of the Gutenberg–Richter frequency–magnitude relationship, the fractal dimension d of the set of the epicenters, and fracture cycle parameter q = αb ? d, where coefficient α determines the ratio between the magnitude and source size M = α log l + β. It is shown that during the filling of a reservoir, these parameters undergo statistically reliable variations: at the initial stages, the b-value increases, the fractal dimension of the set of epicenters decreases, and the fracture cycle parameter q grows and becomes positive in the middle of the time interval of reservoir filling. After a reservoir is filled, these parameters recover their background values. The aftershock sequences of the three strongest earthquakes—before, in the beginning, and in the middle of the reservoir filling period—are studied. It is confirmed that the Omori parameter p for the aftershock sequences during filling is smaller than for the earthquake before filling. Based on the dynamics of the studied parameters, it is conjectured that the relaxation time of the transitional seismic regime after the emergence of induced seismicity is about 10 years.  相似文献   

17.
18.
Abstract

Some commonly used statistical distributions have been compared to find their applicability for describing minimum flows of the Tigris River at Baghdad gauging station. Drought flows with given return period have, thereafter, been predicted by these techniques. The mean of the estimated flows by the various distributions has been calculated to represent a design drought; upper and lower values estimated have been used to give an idea of variation in drought flow estimation. The methodology suggested herein may avoid the dilemma as to which distribution to select for drought flow estimation.  相似文献   

19.
— To elucidate the spatial complexity of damage and evolution of localized failure in the transitional regime from brittle faulting to cataclastic ductile flow in a porous sandstone, we performed a series of triaxial compression experiments on Rothbach sandstone (20% porosity). Quantitative microstructural analysis and X-ray computed tomography (CT) imaging were conducted on deformed samples. Localized failure was observed in samples at effective pressures ranging from 5 MPa to 130 MPa. In the brittle faulting regime, dilating shear bands were observed. The CT images and stereological measurements reveal the geometric complexity and spatial heterogeneity of damage in the failed samples. In the transitional regime (at effective pressures between 45 MPa and 130 MPa), compacting shear bands at high angles and compaction bands perpendicular to the maximum compression direction were observed. The laboratory results suggest that these complex localized features can be pervasive in sandstone formations, not just limited to the very porous aeolian sandstone in which they were first documented. The microstructural observations are in qualitative agreement with theoretical predictions of bifurcation analyses, except for the occurrence of compaction bands in the sample deformed at effective pressure of 130 MPa. The bifurcation analysis with the constitutive model used in this paper is nonadequate to predict compaction band formation, may be due to the neglect of bedding anisotropy of the rock and multiple yield mechanisms in the constitutive model.  相似文献   

20.
The amount of sediment should be taken into consideration in the planning of water structures for efficient use of limited water resources. It is important to estimate the amount of sediment for the successful operation of these structures in their future performances. Such estimations can be achieved by Artificial Neural Network (ANNs) with low error percentages as seen in many other disciplines. These networks also enable the modeling of nonlinear relationships between the parameters affecting the event. The purpose of this research is to establish models for sediment amounts in the Tigris River at the Diyarbakir measurement station in Turkey. Rainfall, temperature and discharge are taken as independent variables in the models, whereas sediment is taken as the dependent variable. Fourteen different models are generated using ANNs and Regression Analysis (RA). The results are compared with each other and with the observed data. The relative error and determination coefficient are used as comparison criteria. It is concluded that due to their nonlinear modeling capability, ANNs give better results than RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号