首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase relations in the system KAlSi3O8-NaAlSi 3O8 have been examined at pressures of 5–23 GPa and temperatures of 700–1200° C. KAlSi3O8 sanidine first dissociates into a mixture of wadeite-type K2Si4O9, kyanite and coesite at 6–7 GPa, which further recombines into KAlSi3O8 hollandite at 9–10 GPa. In contrast, NaAlSi3O8 hollandite is not stable at 800–1200° C near 23 GPa, where the mixture of jadeite plus stishovite directly changes into the assemblage of calcium ferrite-type NaAlSiO4 plus stishovite. Phase relations in the system KAlSi3O8-NaAlSi3O8 at 1000° C show that NaAlSi3O8 component gradually dissolves into hollandite with increasing pressure. The maximum solubility of NaAlSi3O8 in hollandite at 1000° C was about 40 mol% at 22.5 GPa, above which it decreases with pressure. Unit cell volume of the hollandite solid solution decreases with increasing NaAlSi3O8 component. The hollandite solid solution in this system may be an important candidate as a host mineral of K and Na in the uppermost lower mantle  相似文献   

2.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

3.
The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.  相似文献   

4.
BERMAN  R. G. 《Journal of Petrology》1988,29(2):445-522
Internally consistent standard state thermodynamic data arepresented for 67 minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2.The method of mathematical programming was used to achieve consistencyof derived properties with phase equilibrium, calorimetric,and volumetric data, utilizing equations that account for thethermodynamic consequences of first and second order phase transitions,and temperature-dependent disorder. Tabulated properties arein good agreement with thermophysical data, as well as beingconsistent with the bulk of phase equilibrium data obtainedin solubility studies, weight change experiments, and reversalsinvolving both single and mixed volatile species. The reliabilityof the thermodynamic data set is documented by extensive comparisons(Figs. 4–45) between computed equilibria and phase equilibriumdata. The high degree of consistency obtained with these diverseexperimental data gives confidence that the refined thermodynamicproperties should allow accurate prediction of phase relationshipsamong stoichiometric minerals in complex chemical systems, andprovide a reasonable basis from which activity models for mineralsmay be derived.  相似文献   

5.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

6.
A new thermobarometer, based on the equilibrium: has been calibrated with experiments carried out in the piston-cylinderapparatus. Reversed equilibria were obtained using well-calibrated2.54 cm NaCl furnace assemblies and Ag80Pd20capsules with fO2bufferedat or near iron-wustite. The equilibrium is located between5.2–5.4, 6.6–6.8, and 8.6–8.8 kb at 880, 940,and 1020?C, respectively, and at 5.2 and 8.8 kb between 865–880and 1020–1030?C, respectively. X-ray refinement data indicate that the hercynite (a = 8.15546?) has approximately 18 per cent inverse character. M?ssbauerspectra reveal that 4 mol per cent of the Fe is ferric (2 percent magnetite component). Broad Mossbauer lines and a Fe2+energy level splitting of 3.7 kJ mol–1 calculated fromthe Mossbauer spectra are consistent with the X-ray determineddegree of inversion, although no separate octahedral Fe2+ spectraldoublet is resolved. Calibration of this equation allows calculation of the equilibrium: Thermobarometers based on the above equilibria are widely applicablein granulite fades rocks and yield pressure/temperature datathat are consistent with other well-calibrated barometers andthermometers.  相似文献   

7.
Various members of the KAlSi3O8-BaAl2Si2O8 feldspar series are hydrothermally synthesized. Cellparameters of these are calculated from diffractometer patterns and found to be similar to those of Gay and Roy. A variation diagram is constructed correlating Cn-content and values of ΔFeKα(2θ(111)CaF2—2θ(004)Fsss), which gives $${\text{Mol}}\% {\text{ Cn = 229}}{\text{.83}}\Delta {\text{2}}\theta ---{\text{190}}{\text{.81}}$$ by a least square regression fitting. Phase equilibria relation in the solidus-liquidus-region for the KAlSi3O8-BaAl2Si2O8-H2O system at 1000 kg/cm2 are investigated. It is found to be a case of simple solid solution in a binary system, with reservations at the potassium-rich side of the system. Goranson (1938) gives a temperature of about 1000°C at 1000 kg/cm2 \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) for the incongruent melting of sanidine, but the authors prefer a value around 930°C at the same \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) . Reaction products of starting materials on the join KAlSi2O6-BaAl2Si2O8 and KAlSiO4-BaAl2Si2O8 gave no experimental hint for replacement of K+ by Ba++.  相似文献   

8.
Liquidus phase equilibria have been determined in the system CaAl2Si2O8-NaAlSi3O8-KAlSi3O8-NaAlSiO4-KAlSiO4 (An-Ab-Or-Ne-Ks) at a pressure of water of 5 kb, for low anorthite contents. The main effects of increasing anorthite content on phase relationships in the system Ab-Or-Ne-Ks include the expansion of the plagioclase stability field towards the potassium-rich part of the system, and an accompanying contraction of the alkali feldspar, leucite, nepheline and kalsilite stability fields; and an increase in liquidus temperatures throughout most of the compositional range. Two quaternary invariant points have been identified in the system, one a reaction point between the fields of alkali feldspar, plagioclase, nepheline and kalsilite at approximately An4, and the other probably a quaternary eutectic between the fields of alkali feldspar, plagioclase, leucite and kalsilite at approximately An6. A shallow minimum trough in liquidus temperatures occurs on the two-feldspar surface, and this would be expected to control the paths of liquids cooling under equilibrium conditions. Phase relationships in this quaternary system have been applied to the interpretation of the histories of the potassium-rich rocks of the Roman Volcanic Region, Italy. Differentiation of the phonolitic series in this region may have occurred by two-feldspar fractionation.  相似文献   

9.
Zusammenfassung Im System KFeSi3O8–KAlSi3O8 wird eine Mischungslücke gefunden, welche den Bereich von 10–60 Mol. % K-Fe-Feldspat umfaßt. Die Mischkristalle links und rechts der Mischungslücke verhalten sich ähnlich wie ihre benachbarten Endglieder. Das Fehlen von intermediären Phasen auf der Eisenseite und die Mischungslücke machen es wahrscheinlich, daß das Verhalten des K-Fe-Feldspates nicht auf das Verhalten des K-Al-Feldspates extrapoliert werden darf.
Summary In the system KFeSi3O8–KAlSi3O8 a miscibility-gap is found from 10 to 60 Mol.% K-Fe-felspar. The mixed crystals on the right and left side of the miscibility-gap show a behaviour similar to the corresponding end-members. The lack of intermediate phases on the iron-side and the miscibility-gap make probable that one cannot extrapolate the behaviour of the K-Fe-felspar to the behaviour of the K-Al-felspar.


Mit 3 Textabbildungen

Herrn Professor Dr.F. Machatschki zum 70. Geburtstag gewidmet.  相似文献   

10.
An increasing number of occurrences of margarite have been reported in the last years. However, previous experimental investigations in the system CaO-Al2O3-SiO2-H2O are limited to the synthesis of margarite and to the upper stability limit according to the reaction (1) 1 margarite?1 anorthite +1 corundum +1 H2O (Chatterjee, 1971; Velde, 1971). Since margarite often occurs together with quartz, the upper stability limit of margarite in the presence of quartz is of special interest. Therefore, the reactions (5) 1 margarite +1 quartz ?1anorthite +1 kyanite/andalusite +1 H2O and (6) 4 margarite+3 quartz ? 2 zoisite+5 kyanite+3 H2O were investigated experimentally using mixtures of natural margarite (from Chester, Mass., USA), quartz, kyanite, andalusite, zoisite, and synthetic anorthite. The indicated equilibrium temperatures at water pressures equal to total pressure are: 515± 25°C at 4 kb, 545 ±15°C at 5 kb, 590±10°C at 7 kb, and 650±10°C at 9 kb for reaction (5), and 651±11°C at 10 kb, 648 ± 8°C at 12.5kb, and 643±13°C at 15kb for reaction (6), respectively. Besides this, additional brackets for equilibrium temperatures were determined for the above cited reaction (1): 520±10°C at 3 kb, 580±10°C at 5 kb, and 640± 20°C at 7 kb. On the basis of these experimentally determined reactions (1), (5), and (6) and of the reactions (3) 2 zoisite +1 kyanite? 4 anorthite +1 corundum +1 H2O (7) 2 zoisite +1 kyanite +1 quartz ? 4 anorthite +1 H2O and (10) 1 pyrophyllite ? 1 andalusite/kyanite+3 quartz+1 H2O for which experimental or, in the case of reaction (3), calculated data were already available, a pressure-temperature diagram with 3 invariant points and 11 univariant reactions was developed using the method of Schreinemakers. This diagram, summarizing both experimental and phase relation studies, allows conclusions about the conditions under which margarite has been formed in nature. Margarite is limited to low grade metamorphism at water pressures up to approximately 3.5 kb; in the presence of quartz, margarite is even limited to low grade metamorphism at water pressures up to 5.5 kb. Only at water pressures higher than the values stated before margarite, and margarite+quartz, respectively, can occur in medium grade metamorphism (as defined by Winkler, 1970 and 1973). For the combined occurrence of margarite+quartz and staurolite as reported by Harder (1956) and Frey (personal communication, 1973) it may be estimated that water pressure has been greater than approximately 5.5 kb, wheras temperature has been in the range from 550 to 650°C. Furthermore, the present study shows that the assemblage zoisite+kyanite (+ H2O) is an indicator of both pressure [P H 2 O> approximately 9kb]and temperature [T> approximately 640 to 650° Cat water Pressures up to 15 kb].  相似文献   

11.
A drop calorimetric study, between 900 and 1800 K, of amorphous SiO2, NaAlSi3O8, NaAlSi2O6, NaAlSiO4 and KAlSi3O8 shows the increase in heat capacity which results from glass transitions. For these glasses, the fictive temperature has a negligible effect on the heat capacity above room temperature, but it has an important influence on the enthalpy of formation as obtained from solution calorimetry. From these results and published Cp and enthalpy of solution data, several properties have been calculated: the enthalpies of fusion of high albite, nepheline, Jadeite and high sanidine, the thermodynamic functions of amorphous NaAlSi3O8 and KAlSi3O8 between 0 and 2000 K, and some mixing properties of liquids along the join SiO2-NaAlSi3O8. The latter data suggest that these liquids behave more closely as athermal solutions than as regular solutions.  相似文献   

12.
The system albite-celsian-water was investigated at isothermal sections of 670, 760, 800, 900, 1000 and 1100° C at 1 Kbar. At temperatures above about 950° C the existence of a solid solution series could be shown. In the condensed part of the 930° C/1 Kbar section the partition of barium between melt and coexisting crystals was measured using an electron probe microanalyzer. The barium content of crystals grown in equilibrium with a melt is always higher than the barium content of the starting composition, so albite-celsian shows an ascending type solid solution series at low total water pressures. In the subsolidus region two types of solvi are existent, which show different ways of phase unmixing. The relatively low barium contents of natural albites are interpreted as being due to geochemical reasons rather than crystalchemical reasons.

Meinem hochverehrten Lehrer, Herrn Prof. Dr. K. Jasmund, danke ich für sein lebhaftes Interesse während der Durchführung dieser Arbeit und für die kritische Durchsicht des Manuskripts. Mein Dank gilt ferner Herrn Dr. H. A. Seck für die Einarbeitung in die experimentellen Methoden der Hydrothermalsynthese und für kritische Anmerkungen zum Manuskript. Fräulein Dr. M. Corlett danke ich für wertvolle Informationen zur Messung mit der Elektronenstrahl-Mikrosonde.

Die Untersuchung wurde mit Hilfe von Personal- und Sachmitteln durchgeführt, die Herrn Professor Dr. K. Jasmund von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt worden waren.  相似文献   

13.
The solidus temperatures in the haplogranite-system NaAlSi3O8-KAlSi3O8-SiO2-H2O-CO2 have been determined up to 15 kbar for a constant molar ratio of sodium to potassium of 11 and for fluid compositions ranging from pure water to pure carbon dioxide. The data for the water-saturated solidus are virtually identical with those of previous studies. At constant pressure, the solidus curve as a function of the fluid phase composition exhibits a point of inflection in the range of the water-rich compositions. This phenomenon is attributed to chemical interactions between the CO2 and the H2O in the silicate melt. The point of inflection disappears if the CO2 in the gas phase is replaced by molecular nitrogen. The CO2-saturated solidi have been measured at 2 and 5 kbars. The data at 5 kbar indicate a melting point depression in the order of 40° C compared to the dry solidus of Huang and Wyllie (1975). The experimental data can be used to estimate the melting temperatures of common quartz and feldspar bearing crustal rocks under the conditions of granulite facies metamorphism. Since for most fluid phase compositions, the solidus curves are very steep in the P, T-diagram, the beginning of melting is nearly exclusively determined by the fluid composition and almost independent of pressure between about 2 and more than 10 kbar. Therefore, the onset of partial melting in quartz and feldspar containing rocks under granulite facies conditions can be used to estimate the composition of a coexisting H2O-CO2 fluid phase if geothermometric data are available. The temperature range between the beginning of granulite facies metamorphism and the initiation of melting expands with increasing carbon dioxide content in the H2O-CO2 fluid phase. At a CO2 molar fraction of 0.9, this range extends from about 600° C to 900° C and is almost independent of pressure.  相似文献   

14.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

15.
The effect of CaO and MgO, with or without TiO2 and P2O5, on the two-melt field in the simplified system Fe2SiO4–KAlSi3O8–SiO2 has been experimentally determined at 1,050°–1,240°C, 400 MPa. Despite the suppressing effect of MgO, CaO, and pressure on silicate melt immiscibility, our experiments show that this process is still viable at mid-crustal pressures when small amounts (0.6–2.0 wt%) of P2O5 and TiO2 are present. Our data stress that the major element partition coefficients between the two melts are highly correlated with the degree of polymerisation (nbo/t) of the SiO2-rich melt, whatever temperature, pressure, or exact composition. Experimental immiscible melt compositions in natural systems at 0.1 MPa from the literature (lunar and tholeiitic basalts) plot on similar but distinct curves compared to the simplified system. These relations between melt polymerisation and partition coefficients, which hold for a large range of compositions and fO2, are extended to various volcanic and plutonic rocks. This analysis strengthens the proposal that silicate melt immiscibility can be important in volcanic rocks of various compositions (from tholeiitic basalts to lamprophyres). However, the majority of proposed immiscible compositions in plutonic rocks are at least not coexisting melts, but may have suffered accumulation of early crystallized minerals.  相似文献   

16.
Liquidus relations in the four-component system Na2O–Al2O3–SiO2–F2O–1were studied at 0· 1 and 100 MPa to define the locationof fluoride–silicate liquid immiscibility and outlinedifferentiation paths of fluorine-bearing silicic magmas. Thefluoride–silicate liquid immiscibility spans the silica–albite–cryoliteand silica–topaz–cryolite ternaries and the haplogranite-cryolitebinary at greater than 960°C and 0· 1–100 MPa.With increasing Al2O3 in the system and increasing aluminum/alkalication ratio, the two-liquid gap contracts and migrates fromthe silica liquidus to the cryolite liquidus. The gap does notextend to subaluminous and peraluminous melt compositions. Forall alkali feldspar–quartz-bearing systems, the miscibilitygap remains located on the cryolite liquidus and is thus inaccessibleto differentiating granitic and rhyolitic melts. In peralkalinesystems, the magmatic differentiation is terminated at the albite–quartz–cryoliteeutectic at 770°C, 100 MPa, 5 wt % F and cation Al/Na =0· 75. The addition of topaz, however, significantlylowers melting temperatures and allows strong fluorine enrichmentin subaluminous compositions. At 100 MPa, the binary topaz–cryoliteeutectic is located at 770°C, 39 wt % F, cation Al/Na 0·95, and the ternary quartz–topaz–cryolite eutecticis found at 740°C, 32 wt % F, 30 wt % SiO2 and cation Al/Na 0· 95. Such location of both eutectics enables fractionationpaths of subaluminous quartz-saturated systems to produce fluorine-rich,SiO2-depleted and nepheline-normative residual liquids. KEY WORDS: silicate melt; granite; rhyolite; fluorine; liquid immiscibility  相似文献   

17.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

18.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

19.
Ohne Zusammenfassung
Stability conditions of grossularite-bearing parageneses in the system CaO-Al2O3-SiO2-CO2-H2O

Herrn Prof. Dr. H. G. F. Winkler danke ich vielmals für sein Interesse an dieser Arbeit, für anregende Diskussionen und die kritische Durchsicht des Manuskriptes. Auch den Herren Doz. Dr. P. Metz, Dr. K.-H. Nitsch und Doz. Dr. V. Trommsdorff danke ich herzlich für wertvolle Diskussionen und Hinweise. Herrn Dr. E-an Zen danke ich für einen Hinweis zur Phasentheorie und Herrn Prof. Dr. E. Schwarzmann für die Durchführung von IR-Aufnahmen. — Der Deutschen Forschungsgemeinschaft gilt mein Dank für die Arheitsmöglichkeiten an den Herrn Prof. Dr. Winkler zur Verfügung gestellten Apparaturen.  相似文献   

20.
To further our knowledge of the effects of volatile components on phase relationships in aluminosilicate systems, we determined the vapor saturated solidi of albite, anorthite, and sanidine in the presence of CO2 vapor. The depression of the temperature of the solidus of albite by CO2 decreases from 30° C at 10 kbar, to 10° C at 20 kbar, to about 0 at 25 kbar, suggesting that the solubility of CO2 in NaAlSi3O8 liquid in equilibrium with solid albite decreases with increasing pressure and temperature. In contrast, CO2 lowers the temperature of the solidus of anorthite by 30° C at 14 kbar, and by 70dg C at 25 kbar. This contrasting behavior of albite and anorthite is also reflected in the behavior of melting in the absence of volatile components. Whereas albite melts congruently to a liquid of NaAl-Si3O8 composition to pressures of 35 kbar, anorthite melts congruently to only about 10 kbar and, at higher pressures, incongruently to corundum plus a liquid that is enriched in SiO2 and CaO and depleted in Al2O3 relative to CaAl2Si2O8.The tendency toward incongruent melting with increasing pressure in albite and anorthite produces an increase in the activity of SiO2 component in the liquid ( ). We predict that this increases the ratio of molecular CO2/CO 3 2– in these liquids, but the experimental results from other workers are mutually contradictory. Because of the positive dP/dT of the albite solidus and the negative dP/dT of the anorthite solidus, we propose that a negative temperature derivative of the solubility of molecular CO2 in plagioclase liquids may partly explain the decrease in solubility of carbon with increasing pressure in near-solidus NaAlSi3O8 liquids, which is in contrast to that in CaAl2Si2O8 liquid. Also, reaction of CO2 with NaAlSi3O8 liquid to form CO 3 2– that is complexed with Na+ must be accompanied by a change in Al3+ from network-former to network-modifier, as Na+ is no longer abailable to charge-balance Al3+ in a network-forming role. However, when anorthite melts incongruently to corundum plus a CaO-rich liquid, the complexing of CO 3 2– with the excess Ca2+ in the liquid does not require a change in the structural role of aluminum, and it may be more energetically favorable.The depression of the temperature of the solidus of sanidine resulting from the addition of CO2 increases from 50° C at 5 kbar to 170° C at 15 kbar. In marked contrast to the plagioclase feldspars, sanidine melts incongruently to leucite plus a SiO2-rich liquid up to the singular point at 15 kbar. Above this pressure, sanidine melts congruently, resulting in a decrease in the with increasing pressure in the interval up to 15 kbar. Above this pressure, the congruent melting of sanidine results in a lower and nearly constant relative to those of albite and anorthite, and CO2 produces a nearly constant freezing-point depression of about 170° C. Because of the low at pressures above the singular point, we infer that most of the carbon dissolves as CO 3 2– , resulting in a low CO2/ CO 3 2– , but a high total carbon content.The principles derived from the studies of phase equilibria in these chemically simple systems provide some information on the structural and thermal properties of magmas. We propose that the is an important parameter in controlling the speciation of carbon in these feldspathic liquids, but it certainly is not the only factor, and it may be relatively less significant in more complex compositions. In addition, our phase-equilibria approach does not provide direct thermal and structural information as do calorimetry and spectroscopy, but the latter have been used primarily on glasses (quenched liquids) and cannot be used in situ to derive direct information on liquids at elevated pressures, as can our method. Hopefully, the results of all of these approaches can be integrated to yield useful results.Institute of Geophysics and Planetary Physics, Contribution No. 2744  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号