首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qinghua Feng 《GeoJournal》1991,25(2-3):255-263
Conclusions 1. The drainage of the Kyagar glacier dammed lake and the Tram Kangri glacier dammed lake at the upper Shaksgam is the main reason for glacier outburst floods in the Yarkant river. The Kyagar glacier dammed lake is characterized by subglacial drainage, while the Tram Kangri glacier dammed lake by mainly lateral drainage and, secondly, by subglacial drainage. 2. The drainage mechanism of the Tram Kangri ice dam determines the main characteristics of flood hydrography of the Kagun station, while the Kyagar glacier dammed lake plays an important role in the formation of floods. 3. Glacier outburst floods in the Yarkant river are characterized mainly by high peak discharge, big rising rate, small total volume and short duration. The floods happen mostly from late summer to early autumn. A period of 6 to 10 years in occurrence of large scale glacier outburst floods exist. The periodicity depends mainly on large scale drainage in the Kyagar ice-dammed lake. 4. Formation and dimensions of glacier dams at the upper Shaksgam were determined by long-term variations of the regional climate, whereas the changes of storage capacity in the lake reflect cold and warm changes of alpine region. Therefore, frequent glacier outburst floods indicate glacier advance and climatic variations.  相似文献   

2.
Yin  Baoling  Zeng  Jing  Zhang  Yulun  Huai  Baojuan  Wang  Yetang 《Natural Hazards》2019,95(3):877-881
Natural Hazards - Kyagar glacier lake outburst floods (GLOFs) have long been a serious nature hazard in Yarkant river basins of the Chinese Karakoram, threatening more than one million people....  相似文献   

3.
我国西部地区经常发生洪水灾害。此为当地干旱区自然环境状况的特点。作者经过实地考察中天山地区与喀喇昆仑山地区,认为这是由于冰川阻塞湖引起的突发性洪水灾害,并且获得关于洪水的第一手资料。认为该洪水类型具有暴发突然、变化快、历时短暂、发生地受冰川环境影响大等特点。初步判定关于冰川阻塞湖突发性洪水的排水机制可能。通过对叶尔羌河、昆马力克河及四棵树河的详细研究,利用混沌及分形等数理方法,计算出相关特性定量指标。发现可预报洪水序列与阻塞湖库容量有正相关关系。结合整个西部地区的冰川分布进行整合分析.发现冰川阻塞湖引起突发性洪水的发生规律。结合分析阿尔泰山、祁连山及西藏地区地理环境特点,认为塔里木盆地周边地区是冰湖洪水的突发区。加强对冰川阻塞湖洪水的研究,希望对未来的西部大开发,尤其是基础设施建设和保护起到辅助指导作用。  相似文献   

4.
The effects of glacier ice block grounding on the morphology and sedimentology of proglacial fluvial outwash were examined during a glacier outburst flood or jökulhlaup, near Søndre Strømfjord, west Greenland. Observations made during and after the 1987 jökulhlaup both on the surface of an ice contact delta and within a confined valley sandur plain provided information about the formation of ice block obstacle marks and the significance of these bedforms for sandur morphology and sedimentology. Flow directions determined from obstacle mark morphology have been used successfully to chart flow direction changes on the falling limb of the jökulhlaup. Maximum flow depths for scour around stranded ice blocks may be given by 0·5–0·9 times the diameter of the ice block, as estimated from the depth of scour, the height of the obstacle shadow or the extent of ice block meltout sediments. Minimum flow depths can be represented by the height of the obstacle shadow above the mean bed level. The internal composition of the shadow indicates the ability of the flow to transport various sizes of material into the lee of obstacles. Ice block obstacle marks within the distal portion of the sandur initiated waning stage channel change. Proximal and lateral erosion around stranded ice blocks extended downstream from the ice block, forming chute channels which then captured waning stage flows, resulting in significant bar incision with associated deposition of lobate or deltaic deposits. It is suggested that ice block obstacle marks are important in terms of channel morphology, channel morphological change and their usefulness as palaeohydrological indicators.  相似文献   

5.
T. T. Veblen 《GeoJournal》1982,6(2):141-150
From May 21–25, 1960 many of the cities of south-cenral Chile suffered extensive damage when shaken by 11 shocks of an earthquake swarm, each measuring over 6 on the Richter scale with the strongest at 8.5. Associated with this seismic activity were volcanic eruptions and thousands of debris avalanches, lands lides, and mudflows in the Andes fromc. 39° to 42° Lat. S. The events of 1960 led to the recognition of long-term effects of repeated catastrophic phenomena on the landform, soil, and vegetation patterns of south-central Chile. Many of the native tree species, including the dominant Nothofagus species, are dependent on massive disturbance for their regeneration which is of critical importance to forest management. Catastrophic geologic hazards, as well as snow avalanches, are highly significant to all aspects of native forest use including production forestry, forest recreation, and protection forestry. The importance of environmental hazards in forest resource development and conservation in Latin America has received scant attention but, as shown by the case of the Andean region of south-central Chile, should be a major consideration in resource use planning.  相似文献   

6.
《Quaternary Research》2011,76(3):393-396
A prominent lake formed when glaciers descending from the Kodar Range blocked the River Vitim in central Transbaikalia, Siberia. Glacial Lake Vitim, evidenced by palaeoshorelines and deltas, covered 23,500 km2 and held a volume of ~ 3000 km3. We infer that a large canyon in the area of the postulated ice dam served as a spillway during an outburst flood that drained through the rivers Vitim and Lena into the Arctic Ocean. The inferred outburst flood, of a magnitude comparable to the largest known floods on Earth, possibly explains a freshwater spike at ~ 13 cal ka BP inferred from Arctic Ocean sediments.  相似文献   

7.
Crustal contributions to arc magmatism in the Andes of Central Chile   总被引:52,自引:4,他引:52  
Fifteen andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis. All 15 centers lie 90 km above the Benioff zone and 280±20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and seafloor are nearly constant along the segment. Nonetheless, from S to N along the volcanic front (at 57.5% SiO2) K2O rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Ce from 25 to 50 ppm, whereas FeO*/MgO declines from >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part reflecting suppression of HREE enrichment by deep-crustal garnet. Rb, Cs, Th, and U contents all rise markedly from S to N, but Rb/Cs values double northward — opposite to prediction were the regional alkali enrichment controlled by sediment subduction. K/Rb drops steeply and scatters greatly within many (biotite-free) andesitic suites. Wide diversity in Zr/Hf, Zr/Rb, Ba/Ta, and Ba/La within and among neighboring suites (which lack zircon and alkali feldspar) largely reflects local variability of intracrustal (not slab or mantle) contributions. Pb-isotope data define a limited range that straddles the Stacey-Kramers line, is bracketed by values of local basement rocks, in part plots above the field of Nazca plate sediment, and shows no indication of a steep (mantle+sedimentary) Pb mixing trend. 87Sr/86Sr values rise northward from 0.7036 to 0.7057, and 143Nd/144Nd values drop from 0.5129 to 0.5125. A northward climb in basal elevation of volcanic-front edifices from 1350 m to 4500 m elevation coincides with a Bougueranomaly gradient from –95 to –295 mgal, interpreted to indicate thickening of the crust from 30–35 km to 50–60 km. Complementary to the thickening crust, the mantle wedge beneath the front thins northward from about 60 km to 30–40 km (as slab depth is constant). The thick northern crust contains an abundance of Paleozoic and Triassic rocks, whereas the proportion of younger arc-intrusive basement increases southward. Primitive basalts are unknown anywhere along the arc. Base-level isotopic and chemical values for each volcano are established by blending of subcrustal and deep-crustal magmas in zones of melting, assimilation, storage and homogenization (MASH) at the mantle-crust transition. Scavenging of mid-to upper-crustal silicic-alkalic melts and intracrustal AFC (prominent at the largest center) can subsequently modify ascending magmas, but the base-level geochemical signature at each center reflects the depth of its MASH zone and the age, composition, and proportional contribution of the lowermost crust.  相似文献   

8.
The Jurassic to Miocene sequences of the central Andes, east of Santiago, reputedly show repeated cycles of episodic sub-greenschist facies, burial metamorphism that are identified by sharp breaks in metamorphic grade at major stratigraphic boundaries. This paper presents the first detailed petrochemical analysis of these low-grade metamorphic sequences by examining the progressive development of secondary minerals, reaction progress in mafic phyllosilicates, and topological variations in the low-grade assemblages as a means of testing this model. The results indicate a progressive increase from zeolite facies through to close to the onset of greenschist facies from Miocene to Jurassic rocks. Combined analysis of reaction progress in mafic phyllosilicates and petrochemical relationships of chlorite–pumpellyite–actinolite in metabasites provides no evidence for sharp metamorphic breaks at major stratigraphic boundaries. Integrating the results presented here with the most recent models of stratigraphic/tectonic development of the central Andes shows that the metamorphism took place in two episodes, and was not episodic on a 40-million-year cycle. An absence of sharp breaks in metamorphic grade in any part of the succession, as demonstrated here, shows that the original petrographic establishment of low-grade facies provided insufficient resolution of changes in metamorphic conditions to establish definitive evidence of such breaks. Accordingly, this study suggests that re-assessment of metamorphic breaks reputedly developed in other areas of the Andean Cordillera is imperative in order to resolve the questions raised here about the origin of the low-grade metamorphism.Editorial responsibility: B. Collins  相似文献   

9.
25 new K-Ar data are presented for Upper Cenozoic andesites and ignimbrites from the Andes of north Chile between 20° 30 S and 22° 30 S. The original simple volcanic stratigraphy of andesites overlying ignimbrites has been refined. A more complicated stratigraphy, with some andesites predating the ignimbrites, is described. The sequence and timing of volcanic events differ along the length of the north Chilean Andes. Ages of the earliest widespread ignimbrite eruptions range from 21 m. y. to 10 m. y., in different segments of the volcanic chain. The existence of two large acid extrusives of Quaternary age suggests that generation of acid magmas has continued until recently.
Zusammenfassung 25 neue K-Ar-Daten von känozoischen Andesiten und Ignimbriten der nordchilenischen Anden zwischen 20° 30 S und 22° 30 S werden vorgestellt. Die ursprünglich einfache Stratigraphie — Andesite überlagern Ignimbrite — wurde verfeinert, und eine komplexere Stratigraphie, bei der einige Andesite älter sind als die Ignimbrite, wird beschrieben. Die Reihenfolge und der zeitliche Ablauf vulkanischer Tätigkeit sind in den nordchilenischen Anden komplex. Die ältesten ausgedehnten Ignimbritdecken reichen in den verschiedenen Abschnitten der Vulkanzone von 21 bis 10 Mio. Jahre. Das Vorhandensein von zwei großen sauren quartären Extrusionszyklen läßt vermuten, daß die Bildung von sauren Magmen bis in die Gegenwart andauerte.

Resumen Se presentan 25 nuevas edades radiométricas de lavas y ignimbritas Cenozoicas de los Andes del Norte Chileno, entre los meridianos 20° 30 S y 22° 30 S. La estratigrafía primera de las rocas volcanicas (las lavas sobre las ignimbritas) se ha refinado. Se describe una estratigrafia mas complicada, en que algunas lavas antedatan las ignimbritas. La sucesión y las edades de los eventos volcanicos diferen a lo largo de los Andes del Norte Chileno. Las edades de las erupciones mas tempranas y extensivas varian entre 21 M. a. y 10 M. a. en segmentas diferentes de la zona volcanica. La existencia de dos grandes derrames acidos de edad cuaternaria sugere que la producción de magmas acidas continuó hasta el tiempo reciente.

Résumé On présente 25 valeurs nouvelles sur l'âge radiométrique des andésites et des ignimbrites du Cénozoïque supérieur des Andes du nord du Chili entre les latitudes 20° 30 et 22° 30 S. L'ancienne stratigraphie simplifiée où les andésites surmontent les ignimbrites a été révisée, et remplacée par une stratigraphie plus compliquée où quelques andéseites précèdent les ignimbrites. La succession et la chronologie des éruptions volcaniques diffèrent le long des Andes du nord du Chili. Dans les différentes parties de la chaîne volcanique, l'âge des premières grandes eruptions d'ignimbrites varie entre 21 et 10 M. a. La présence de deux grandes coulées acides d'âge quaternaire permet de supposer que des magmas acides continuent à se former.

26 ( K/Ar) - 20°30 22°30 . — — , , , . - , , . 21 22 . , .
  相似文献   

10.
This work describes a geological scheme of the pre- And ean Domeyko Range of Northern Chile. This pre- And ean area consists of a basement formed by Paleozoic granitic, volcanic, and marine sedimentary rocks, and by Triassic acidic volcanics with continental intercalations. The Andean Basin developed in the Lias over the basement, with initial stages that include volcanic and continental sequences. A continuous marine environment existed in the Hettangian-Tithonian span, with volcanic events in the Bajocian, Callovian, Kimmeridgian, and Tithonian. Evaporitic facies developed in the Oxfordian-Kirnmeridgian. A marine-continental basin is recognized in the Neocomian, the Upper Cretaceous being represented by volcanic and continental deposits, a development similar to the Tertiary one; over these sequences volcanic, detrital, and saline deposits were laid down in the Plio-Pleistocene. Compressional tectonic cycles developed in the Upper Paleozoic, Upper Lias?, Upper Jurassic, Upper Cretaceous, and Tertiary, and tensional phases occured in the Triassic, Cretaceous, and Tertiary. The compressional stages were characterized by intrusive cycles while the tensional phases witnessed volcanic sedimentary events.  相似文献   

11.
High-alumina basalts from seven High-Andean stratovolcanoes (37 °30′S to 41 °S) have major and trace element (including rare earth elements, REE) that are consistent with derivation by partial melting (typically 10–15%) of garnet-free peridotite followed by fractional crystallization of olivine and pyroxene. High-alumina basalts from two stratovolconoes require significantly lower degrees of melting (<5%) or melting of an incompatible, element-enriched source. However, a poorly understood feature of all of these basalts-and calc-alkaline rocks in general-is the mechanism for causing their low TiO2 and heavy REE content relative to oceanic basalts. Further north in Chile (33 °–34 °S and 21 °–22 °S) amphibole-bearing andesites have REE abundances consistent with derivation from a garnet-bearing source such as incompatible, element-rich eclogite (e.g., Franciscan eclogites) or garnet peridotite. The marked petrological and geochemical changes along strike of the Andes are probably related to the varying nature of the subduction process; e.g., dips of the downgoing slab varying from 10 to 30 °.  相似文献   

12.
The Andes of northern Chile currently experience a phase of relief rejuvenation as indicated by valleys that are >1000 m dissected into pediplains. However, it has been unclear when this phase of relief enhancement started. This paper discusses the use of palaeomagnetic chronologies from four sections in the Taracapá-Region (northern Chile) to assess this age. The sections are located in distal and proximal positions. Sediment accumulation occurred between c. 22.5 and 8/7.5 Ma with a hiatus that possibly spans a time interval between c. 19.5 and 11 Ma. The magnetic polarity chronologies suggest a preferred age between 8.0 and 7.5 Ma for the time when relief growth started. In proximal positions, however, alternative correlations suggest an age of 8.5 Ma. In addition, the palaeomagnetic data reveal no rotation of the analysed strata, suggesting a minimum age of c. 22.5 Ma for the tectonic block rotation south of the Arica deflection.  相似文献   

13.
A sudden release of large volumes of water during a glacier outburst flood (GLOF) is a major hazard worldwide. Here, we identify the sedimentary signature of glacial and non‐glacial processes, including GLOFs, based on lacustrine sediments from the distal glacier‐fed Lake Buarvatnet in western Norway. Historically documented GLOFs in 2002 CE and during the 1980s CE are identified in the 210Pb‐ and 14C‐dated sediments. These events have the same sedimentary signature as 12 earlier events throughout the Holocene interpreted to represent previous GLOFs in the catchment. The GLOFs are interpreted to have occurred during periods when the glacier extent was similar to the modern positions, and the events are thus used to pinpoint past positions of the glacier terminus and, hence, the equilibrium line altitudes (ELAs). The results indicate that the glacier Svartenutbreen, located at the eastern part of Folgefonna, had a similar size in 2002 CE as c. 8200–8300 cal. a BP, corresponding to the 8.2 ka event in the North Atlantic region. The regrowth of Sørfonna after the Holocene Thermal Optimum occurred at c. 6900 cal. a BP and Svartenutbreen was at modern size and extent in the periods c. 6400, c. 5450, c. 4850, c. 3850, c. 3550 and c. 1650 cal. a BP. Since 1650 cal. a BP, we infer that the glacier was larger than the 2002 CE glacier extent until 1910 CE when a GLOF occurred. Svartenutbreen has been retreating since 1910 CE, which led to the ice damming of the two historical GLOFs in the 1980s and 2002 CE separated by a glacier advance in the 1990s CE. The findings are discussed and compared to other regional glacier reconstructions in Norway, and emphasize the value of identifying and utilizing GLOFs as an indicator of past ELA variability.  相似文献   

14.
15.
In recent years, climate change and retreating glaciers constitute a major hazard in the Himalaya of South Asia. Glacial lakes are rapidly developing or increasing due to climate change. The rapid development of the lake may cause outburst of the lake. The outburst discharge from the glacial lake can cause catastrophic flooding and disaster in downstream area. Therefore, it is necessary to investigate the impact of climate change on glacial lakes and to understand the characteristics of the glacial lake outburst. In this study, the field assessment of Tsho Rolpa Glacial Lake in the Himalaya of Nepal has been presented and the impact of climate change on this glacial lake has been discussed. The Tsho Rolpa Glacial Lake is the largest and most potentially dangerous glacial lake in Nepal. In addition, a numerical model has been also developed for computing the characteristics of glacial lake outburst due to moraine dam failure by seepage and water overtopping. The numerical model is tested for the flume experimental cases. The simulated results of the outburst discharge, the dam surface erosion, and the temporal variation of the moisture movement in the dam are compared with those obtained from the hydraulic model experiments. The moisture profile calculated by numerical model was agreeable with the experimental moisture profile. The simulated failure surface of the dam due to seepage by considering the suction in slope stability analysis gave more agreeable results than the Janbu's simplified method. The results of the outburst discharge and dam surface erosion also agreed with the experimental results.  相似文献   

16.
Glacial hazards relate to hazards associated with glaciers and glacial lakes in high mountain areas and their impacts downstream. The climatic change/variability in recent decades has made considerable impacts on the glacier life cycle in the Himalayan region. As a result, many big glaciers melted, forming a large number of glacial lakes. Due to an increase in the rate at which ice and snow melted, the accumulation of water in these lakes started increasing. Sudden discharge of large volumes of water with debris from these lakes potentially causes glacial lake outburst floods (GLOFs) in valleys downstream. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. Monitoring of the glacial lakes and extent of GLOF impact along the downstream can be made quickly and precisely using remote sensing technique. A number of hydroelectric projects in India are being planned in the Himalayan regions. It has become necessary for the project planners and designers to account for the GLOF also along with the design flood for deciding the spillway capacity of projects. The present study deals with the estimation of GLOF for a river basin located in the Garwhal Himalaya, India. IRS LISSIII data of the years 2004, 2006 and 2008 have been used for glacial lake mapping, and a total of 91 lakes have been found in the year 2008, and out of these, 45 lakes are having area more than 0.01?km2. All the lakes have been investigated for vulnerability for potential bursting, and it was found that no lake is vulnerable from GLOF point of view. The area of biggest lake is 0.193, 0.199 and 0.203?km2 in the years 2004, 2006 and 2008, respectively. Although no lake is potentially hazardous, GLOF study has been carried out for the biggest lake using MIKE 11 software. A flood of 100-year return period has been considered in addition to GLOF. The flood peak at catchment outlet comes out to be 993.74, 1,184.0 and 1,295.58 cumec due to GLOF; 3,274.74, 3,465.0 and 3,576.58 cumec due to GLOF; and 100-year return flood together considering breach width of 40, 60 and 80?m, respectively.  相似文献   

17.
板块运动驱动力是当代全球动力学研究的核心问题这一。通过地磁斥,引力生产与板块运动密切关系的总结,地磁斥力与地磁引力驱使板块运动的同时效应,古-今和深-浅地磁斥,引务相对大小的计算,板块俯冲深处与地幔前缘间冷接触关系的确定,板块体磁针式转动,全球构造运动与磁暴和地磁斥,引力联合效应的讨论,初步提出地磁斥,引力可作为驱动板块动力源之一,驱动板块运动是地球自转力,重力,地幔对流和地磁力综合作用的结果。  相似文献   

18.
In April 2010, an ice/rockfall into Lake 513 triggered a glacial lake outburst flood (GLOF) along the Chucchun River in the Cordillera Blanca of Peru. This paper reconstructs the hydrological characteristics of this as yet undocumented event using a 1D flood model prepared with HEC-RAS. The principle model inputs were obtained during detailed field surveys of surface characteristics and topography within the river and across the adjacent floodplain; a total of 120 cross-sections were surveyed. These inputs were refined further by eyewitness accounts and additional geomorphological observations. The flood modelling has enabled us to constrain the extent of the water surface and its elevation at each cross-section in addition to defining the peak discharge (580 m3 s?1). These modelling results show good agreement with other information about the flood including: flood marks and minimum flood levels; the lake displacement wave height; the extent of the flooded area; and the travel time from Lake 513 to the confluence with the Santa River. This demonstrates that the model offers a reliable reconstruction of the basic hydrological characteristics of the GLOF. It provides important information about the flood intensity and significantly improves our ability to model future flood scenarios along both the studied river and within neighbouring catchments. The flood hazard, defined by the flood depth during peak discharge, shows that the majority of the damaged infrastructure (houses, bridges, and a drinking water treatment plant) was only subjected to low or medium flood intensities (defined by a maximum water depth of less than 2 m). These low flood intensities help to explain why the flooding caused comparatively minor damage despite the significant public attention it attracted.  相似文献   

19.
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 105 m3 s−1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 104 m3 s−1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 104 m3 s−1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s−1) known worldwide and in the top ten largest floods in North America.  相似文献   

20.
This article documents a 240,000-m3 debris flow resulting from a glacial lake outburst flood in Fjærland, Western Norway, May 8, 2004. The event started when a glacial lake breached a moraine ridge. The ensuing debris flow was able to erode material along its path, increasing in volume from about 25,000 to 240,000 m3 before depositing about 3 km from its starting point. Field investigations, pre- and post-flow aerial photographs as well as airborne laser scanning (LIDAR) were used to describe and investigate the flow. The most striking and unusual feature of this case study is the very pronounced erosion and bulking. We have made a detailed study of this aspect. Erosion and entrainment is quantified and the final volume of the debris flow is determined. We also present geometrical and sedimentological features of the final deposit. Based on the Fjærland data, we suggest that a self-sustaining mechanism might partly explain the extreme growth of debris flows traversing soft terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号