首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
District-wide drought climatology over India for the southwest monsoon season (June–September) has been examined using two simple drought indices; Percent of Normal Precipitation (PNP) and Standardized Precipitation Index (SPI). The season drought indices were computed using long times series (1901–2003) of southwest monsoon season rainfall data of 458 districts over the country. Identification of all India (nation-wide) drought incidences using both PNP and SPI yielded nearly similar results. However, the district-wide climatology based on PNP was biased by the aridity of the region. Whereas district-wide drought climatology based on SPI was not biased by aridity. This study shows that SPI is a better drought index than PNP for the district-wide drought monitoring over the country. SPI is also suitable for examining break and active events in the southwest monsoon rainfall over the country. The trend analysis of district-wide season (June–September) SPI series showed significant negative trends over several districts from Chattisgarh, Bihar, Kerala, Jharkhand, Assam and Meghalaya, Uttaranchal, east Madhya Pradesh, Vidarbha etc., Whereas significant positive trends in the SPI series were observed over several districts from west Uttar Pradesh, west Madhya Pradesh, South & north Interior Karnataka, Konkan and Goa, Madhya Maharashtra, Tamil Nadu, East Uttar Pradesh, Punjab, Gujarat etc.  相似文献   

2.
本文采用华山东峰、西峰和南峰的华山松树轮宽度差值年表重建了1500年以来中国陕西关中及周边地区的初夏干燥指数序列,对重建序列进行了统计特征分析,并同大尺度大气环流场进行了相关分析。结果表明:华山年表的变化与该地区初夏平均干燥指数序列的变化具有很好的一致性,可用来重建该地区的初夏干燥指数序列;该地区在1502~1511年、1570~1580年以及1807~1814年间的初夏季节存在3次较为严重的干旱;该地区初夏干燥指数变化存在着较为明显的周期特征,其中以13a左右和4a左右的周期最为显著,但周期特征在不同的历史阶段存在着明显的差异;重建序列在1784年前后发生了一次较大幅度的方差变化,而1587年前后的均值突变则表现为干燥指数值的急剧降低;该地区初夏季节的干燥程度可能与前期极涡的中心强度及冷空气活动有关。  相似文献   

3.
Tree-ring-width index chronologies of teak (Tectona grandis L.F.) from three sites in central India have been studied for their dendroclimatic potential. The existence of good correlation among the three site chronologies indicates the influence of common forcing factor to the tree growth of the region. Tree growth and climate relationship based on correlation analysis revealed the important contribution of moisture index and rainfall rather than the direct influence of the temperature on tree growth during different seasons. Significant positive relationship of moisture index and rainfall during the monsoon months as well as on the annual scale with tree-ring width variations over the region indicates the important role of moisture availability at the root zone. The results suggest that the teak tree-ring chronologies can be used as high resolution proxy for past precipitation and moisture level in the environment.  相似文献   

4.
Bristlecone pine trees are exceptionally long-lived, and with the incorporation of remnant material have been used to construct multi-millennial length ring–width chronologies. These chronologies can provide valuable information about past temperature and moisture variability. In this study, we outline a method to build a moisture-sensitive bristlecone chronology and assess the robustness and consistency of this sensitivity over the past 1200 yr using new reconstructions of Arkansas River flow (AD 1275–2002 and 1577–2002) and the summer Palmer Drought Sensitivity Index. The chronology, a composite built from parts of three collections in the central Rocky Mountains, is a proxy for decadal-scale moisture variability for the past 18 centuries. Since the sample size is small in some portions of the time series, the chronology should be considered preliminary; the timing and duration of drought events are likely the most robust characteristics. This chronology suggests that the region experienced increased aridity during the medieval period, as did much of western North America, but that the timing and duration of drought episodes within this period were somewhat different from those in other western locations, such as the upper Colorado River basin.  相似文献   

5.
基于19822010年无定河流域的遥感影像、气象和土地利用数据,利用Priestley-Taylor公式计算出潜在蒸散发,进而得到干旱指数,将各气象因子与干旱指数差值进行叠加、逐象元相关分析,得到了无定河流域19822010年干旱指数的时空变化,并分析了气候和土地利用变化对干旱指数变化的影响。结果显示:(1)1982年、2010年干旱指数分别为2.01和2.13,总体趋势是趋干旱的;(2)干旱指数2.0以下的区域迅速减少,2.15以上的区域明显扩张;(3)干旱指数均呈现增加趋势,显著增加的区域集中于无定河流域中游和下游地区;(4)干旱指数变化同气温、水汽压、净辐射的变化成正相关,同降水量变化成负相关;(5)各种土地利用类型的干旱指数均呈现增长趋势,但是增长的幅度有所不同:林地>耕地>草地>建筑用地>水域>未利用地。(6)土地利用对干旱指数平均值的影响非常微弱,干旱指数的变化主要是由于气候变化导致的。  相似文献   

6.
Drought risk assessment using remote sensing and GIS techniques   总被引:1,自引:0,他引:1  
Beginning with a discussion of drought definitions, this review paper attempts to provide a review of fundamental concepts of drought, classification of droughts, drought indices, and the role of remote sensing and geographic information systems for drought evaluation. Owing to the rise in water demand and looming climate change, recent years have witnessed much focus on global drought scenarios. As a natural hazard, drought is best characterized by multiple climatological and hydrological parameters. An understanding of the relationships between these two sets of parameters is necessary to develop measures for mitigating the impacts of droughts. Droughts are recognized as an environmental disaster and have attracted the attention of environmentalists, ecologists, hydrologists, meteorologists, geologists, and agricultural scientists. Temperatures; high winds; low relative humidity; and timing and characteristics of rains, including distribution of rainy days during crop growing seasons, intensity, and duration of rain, and onset and termination, play a significant role in the occurrence of droughts. In contrast to aridity, which is a permanent feature of climate and is restricted to low rainfall areas, a drought is a temporary aberration. Often, there is confusion between a heat wave and a drought, and the distinction is emphasized between heat wave and drought, noting that a typical time scale associated with a heat wave is on the order of a week, while a drought may persist for months or even years. The combination of a heat wave and a drought has dire socio-economic consequences. Drought risk is a product of a region’s exposure to the natural hazard and its vulnerability to extended periods of water shortage. If nations and regions are to make progress in reducing the serious consequences of drought, they must improve their understanding of the hazard and the factors that influence vulnerability. It is critical for drought-prone regions to better understand their drought climatology (i.e., the probability of drought at different levels of intensity and duration) and establish comprehensive and integrated drought information system that incorporates climate, soil, and water supply factors such as precipitation, temperature, soil moisture, snow pack, reservoir and lake levels, ground water levels, and stream flow. All drought-prone nations should develop national drought policies and preparedness plans that place emphasis on risk management rather than following the traditional approach of crisis management, where the emphasis is on reactive, emergency response measures. Crisis management decreases self-reliance and increases dependence on government and donors.  相似文献   

7.

Recent global warming and more frequent droughts are causing significant damage to maize production. A reliable estimate of drought intensity and duration is essential for testing maize hybrids to drought tolerance. For this purpose, the self-calibrating 10-day palmer drought severity index (scPDSI) and standardized precipitation index (SPI) for 1, 2, 3, 6, 9, 18, 27, and 36 10-day scales were used to estimate the effects of drought on grain yield of 32 maize hybrids evaluated in 2017 and 2018 at eight experimental locations in the Pannonian part of Croatia. Time series of observed 10-day mean air temperature, relative humidity, and precipitation totals for a set of “reference” weather stations of the croatian meteorological and hydrological service (DHMZ) for the period 1981–2018 were used to calculate the scPDSI and SPI indices. According to the 10-day scPDSI and SPI for different time scales, 2018 proved to be a “normal year,” while 2017 experienced a “mild to moderate drought,” which resulted in a 13% reduction in maize grain yield at eight experimental locations compared to 2018. The correlation between grain yield and drought indices for summer months was the highest for the 10-day scPDSI. To some extent, correlations between summer months’ SPI for the 3 10-day time scale and maize grain yield were comparable to the corresponding correlations for the 10-day scPDSI. However, for other SPI time scales considered, the corresponding correlations were weaker and less informative. The dependence of grain yield on scPDSI values was not the same for all hybrids, indicating their different tolerance to drought. The reduction in grain yield due to drought was primarily caused by insufficient grain filling (lower 1000-grain weight) and, to some extent, by a reduction in the number of grains. In this study, application of 10-day scPDSI data proved to be more relevant in detecting effects of drought on agronomic traits than application of SPI data for the most time scales.

  相似文献   

8.
基于copula函数的区域干旱分析方法   总被引:12,自引:0,他引:12       下载免费PDF全文
提出不同网格干旱等级影响下的区域干旱指数。采用copula函数,建立了区域干旱历时和干旱强度的联合分布,计算联合分布的重现期,并对实际重现期作区间估计。所提出的区域干旱指数能够反映研究区域内发生干旱的严重程度和该区内不同干旱等级所影响面积的大小,且联合分布同时考虑了干旱历时和干旱强度,更全面地反映区域的干旱状况。重庆市2006年干旱实证分析表明,区域干旱指数能够较好地描述本次干旱的发生发展过程,并计算出联合分布的重现期为118年。  相似文献   

9.
Multiscale interaction between monsoonal circulation and the local topography causes the southern front of the Darjeeling–Bhutan Himalaya to receive one of the highest annual rainfalls (3000–6000 mm) and most frequent heavy rains (up to 800 mm day?1) along the whole southern Himalayan margin. An examination of the patterns of annual rainfall, rainfall concentration, overland flow generation and slope instability indices in the Darjeeling–Bhutan Himalaya for 1986–2015 indicates that the mountain front disturbs rainfall gradient between the Bay of Bengal and the Tibetan Plateau. The results show that the precipitation concentration indices are lowest at the Himalayan front where the annual rainfall and the number of rainy days are highest. The Himalayan front has the highest predisposition to produce overland flow compared to adjacent foreland and the mountain interior. The average probability of the rainfall initialising the shallow landslides increases from 0.6% for a 1-day rainfall threshold of 144 mm to 6.1% for a 4-day rainfall threshold of 193 mm in the study area. The highest probability (up to 10%) of 2-day and longer low-intensity storms at the mountain front indicate that its area is threatened with particularly larger and deeper landslides. The multivariate regression analysis reveals statistically significant linear relationships of rainfall hazard indices with elevation and the distance to the mountain front in the mountain foreland and Himalaya, respectively. Regionally, the Darjeeling Himalaya reveals lower values of rainfall hazard indices, in comparison to the Bhutan Himalaya.  相似文献   

10.
This paper highlights the importance of differentiating between precipitation amount and moisture availability (‘humidity’/‘aridity’) when considering proxy records of climate change. While the terms are sometimes used interchangeably, moisture availability is determined by both (i) precipitation amount and (ii) temperature, through its influence on potential evapotranspiration. As many palaeoenvironmental proxies reflect changes in this water balance rather than purely precipitation amount, it is important to distinguish between the potential relative influences of precipitation and temperature if those records are to be interpreted in terms of climate mechanisms and/or compared with model outputs. As a case study, we explore how precipitation and temperature have determined moisture availability in South Africa's summer rainfall zone over the last 45 000 years. Using quantitative reconstructions of mean annual temperature, summer rainfall amount and an aridity index, our analysis reveals strong spatiotemporal variability in the relative influences of precipitation and temperature on aridity. Temperature is shown to have exerted a considerable and even dominant influence on moisture availability, resulting in elevated humidity during the last glacial period, despite significant reductions in precipitation amount.  相似文献   

11.
Zhu  Bangyan  Chu  Zhengwei  Shen  Fei  Tang  Wei  Wang  Bin  Wang  Xiao 《Natural Hazards》2019,99(1):379-389

Droughts are hindrances to economic and social developments in many parts of the world, especially in developing nations like Kenya. In North Eastern Kenya (NEK), drought is very prevalent. The communities in the region are mainly dependent on animal farming, and drought occurrence leads to great socioeconomic setback. Drought indices used in most studies consider rainfall as the only parameter for assessing drought occurrences. This study analyzes drought in NEK using the Standardized Precipitation Index (SPI) and the Combined Drought Index (CDI) using rainfall and temperature values and Normalized Difference Vegetation Index values for the period 1980–2010. The results of the two indices show significant correlation. However, CDI is preferred in the analysis of the drought compared to the SPI as it gives drought in more detail, showing extreme, severe, moderate and mild. The study recommends the use of the two methods independently since they give similar results and further recommends trial in other parts of the country affected by drought.

  相似文献   

12.
Drought identification and drought severity characterization are crucial to understand water scarcity processes. Evolution of drought and wetness episodes in the upper Nen River (UNR) basin have been analyzed for the period of 1951–2012 using meteorological drought indices and for the period of 1898–2010 using hydrological drought indices. There were three meteorological indices: one based on precipitation [the Standardized Precipitation Index (SPI)] and the other two based on water balance with different formulations of potential evapotranspiration (PET) in the Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, two hydrological indices, the Standardized Runoff Index and Standardized Streamflow Index, were also applied in the UNR basin. Based on the meteorological indices, the results showed that the main dry period of 1965–1980 and wet periods of 1951–1964 and 1981–2002 affected this cold region. It was also found that most areas of the UNR basin experienced near normal condition during the period of 1951–2012. As a whole, the UNR basin mainly had the drought episodes in the decades of 1910, 1920, 1970 and 2000 based on hydrological indices. Also, the severity of droughts decreased from the periods of 1898–1950 to 1951–2010, while the severity of floods increased oppositely during the same periods. A correlation analysis showed that hydrological system needs a time lag of one or more months to respond to meteorological conditions in this cold region. It was also found that although precipitation had a major role in explaining temporal variability of drought, the influence of PET was not negligible. However, the sole temperature driver of PET had an opposite effect in the UNR basin (i.e., misestimating the drought detection) and was inferior to the SPI, which suggests that the PET in the SPEI should be determined by using underlying physical principles. This finding is an important implication for the drought research in future.  相似文献   

13.
In harsh and treeless environments, shrubs constitute the dominant growth form of woody plants, thus offering the opportunity to extend dendrochronological networks beyond the uppermost and northernmost distribution limits of trees. However, shrub‐based dendrochronology has so far resulted in only a few long and climate‐responsive ring‐width chronologies at such stressful sites, particularly above the alpine tree line. A previous study on an alpine Rhododendron shrub species resulted in <80‐year‐long ring‐width chronologies. Here, we collected Rhododendron aganniphum var. schizopeplum stems from elevations between 4000 and 4500 m a.s.l. on the SE Tibetan Plateau and built six tree‐ring width chronologies. One of them is 401 years long and well replicated from AD 1670 to 2011 (EPS>0.85), thus representing the longest shrub chronology available to date. A principal component analysis (PCA) converted the total variability of all six site chronologies into PCs. Then, the six site chronologies and the PC1, accounting for 65.9% of the total variance of the tree‐ring width, were correlated with time series of monthly climate data. Based on this, the year‐to‐year variability of the ring‐width indices was positively correlated with July temperature, which thus turned out to be the dominant factor controlling growth. Accordingly, such long shrub‐ring chronologies may act as climatic and ecological proxies in treeless environments of the Tibetan Plateau.  相似文献   

14.
Among the numerous factors that trigger landslide events, the anthropogenic impact caused by inadequate planning and faulty land use in urban areas is increasing. The Zemun settlement on the northern outskirts of Belgrade has experienced a number of landslides in the last three decades, endangering buildings and roads, and claiming human lives, particularly in the case of the 2010/2011 landslides. Selected meteorological parameters were used to calculate rainfall erosivity indices such as Precipitation Concentration Index and Modified Fournier Index over the period 1991–2015. Drought indices, Lang aridity index and Palfai Drought Index were calculated as well. Mann–Kendall trend test was applied to identify potential rising and/or declining trends both in meteorological parameters and calculated indices. Trend analysis of the annual and seasonal scales yielded a statistically significant trend in the spring time series. Stable arid and pronounced drought conditions were recorded. The modified Fournier index based on monthly mean values yields moderate aggressiveness, with several extreme values indicating very high erosivity classes, especially for 2010/2011. The geological substrate is predominantly loess and hence highly susceptible to erosion and slope failure when climatological conditions are suitable. Accelerated urbanization at the end of the last century reduced vegetation cover, intensified pressure on the vertical loess slope, and lacked suitable rain drainage systems so that surface-water runoff was directed into the porous loess, thereby endangering slope stability. We proposed a geomorphic model to describe the nature of the erosional processes on the loess cliffs of the Zemun loess plateau. Results from this study have implications for mitigation strategies.  相似文献   

15.
Drought is a serious climatic condition that affects nearly all climatic zones worldwide, with semi-arid regions being especially susceptible to drought conditions because of their low annual precipitation and sensitivity to climate changes. Drought indices such as the standardized precipitation index (SPI) using meteorological data and vegetation indices from satellite data were developed for quantifying drought conditions. Remote sensing of semi-arid vegetation can provide vegetation indices which can be used to link drought conditions when correlated with various meteorological data based drought indices. The present study was carried out for drought monitoring for three districts namely Bhilwara, Kota and Udaipur of Rajasthan state in India using SPI, normalized difference vegetation index (NDVI), water supply vegetation index (WSVI) and vegetation condition index (VCI) derived from the Advanced Very High resolution Radiometer (AVHRR). The SPI was computed at different time scales of 1, 2, 3, 6, 9 and 12 months using monthly rainfall data. The NDVI and WSVI were correlated to the SPI and it was observed that for the three stations, the correlation coefficient was high for different time scales. Bhilwara district having the best correlation for the 9-month time scale shows late response while Kota district having the best correlation for 1-month shows fast response. On the basis of the SPI analysis, it was found that the area was worst affected by drought in the year 2002. This was validated on the basis of NDVI, WSVI and VCI. The study clearly shows that integrated analysis of ground measured data and satellite data has a great potential in drought monitoring.  相似文献   

16.
使用1982-2006年GIMMS AVHRR NDVI数据集与同期的CI、K、Pa、SPI、Z、PDSI等干旱指数做了对比分析, 讨论了河南省植被状态指数VCI对气象干旱的滞后效应及干旱监测能力. 结果表明: VCI指数与气象干旱指数的相关性受不同下垫面的影响较大, 农地的VCI与气象干旱指数相关性要明显高于林地, 农地VCI与气象干旱指数呈现正相关关系. 在河南省不同的作物生长阶段, VCI对气象干旱有着不同的滞后效应, 其中, 3-5月份冬小麦生长期VCI对气象条件的反应滞后1~3个月, 7、9月份夏玉米生长期VCI对气象条件的反应滞后1月. 总体上看, 结合前期的气象数据, VCI对河南省气象干旱有一定的指示作用和监测能力.  相似文献   

17.
He  Jun  Yang  Xiao-Hua  Li  Jian-Qiang  Jin  Ju-Liang  Wei  Yi-Ming  Chen  Xiao-Juan 《Natural Hazards》2014,75(2):199-217

Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.

  相似文献   

18.
Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.  相似文献   

19.
蔡晓军  茅海祥  王文 《冰川冻土》2013,35(4):978-989
利用1960-2010年江淮流域34个地面气象观测站的逐日降水、日平均气温、相对湿度等实测资料, 分别计算了江淮流域的Z指数、降水距平百分率、相对湿润指数、标准化降水指数以及CI指数, 经与江淮流域干旱记录对比分析, 结果表明: 月尺度的Z指数在5种干旱指数中应用效果最好, 符合率达70%以上;在时间域上, 月尺度的Z指数仅在春季吻合率稍差, 其余月份均在70%以上;月尺度的SPI指数在冬季吻合率较差, 其余月份同Z指数总体相当;MI指数效果最差;日尺度的CI指数应用效果存在时空差异, 在河南最好, 在山东最差, 夏季效果最好, 春季、冬季最差.  相似文献   

20.
Abstract: Two robust precipitation reconstructions were conducted by combining tree-ring chronologies, dryness/wetness indices from historical documents, and climate data from the global grid. It was found that the recurrent drought history of a region can help us understand the variability of precipitation. Several dry/wet periods during the past four centuries and potential cycles of precipitation variation were determined. Furthermore, the reconstructions are not only consistent well with each other in North-central China, but also in good agreement with variations of precipitation in northeastern Mongolia, the Longxi area in Gangsu Province and the Dulan area of Qinghai Province, and the snow accumulation of the Guliya glacier. These synchronous variations indicate that it is valuable to study various climate records, find common information and determine the driving force of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号