首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excavations were made in the colluvial deposits of seven kettleholes in a sandy esker at Kuttanen, northwestern Finnish Lapland. The Holocene history of forest fires and the associated colluvial activity initiated on the slopes of the kettleholes were reconstructed based on 131 radiocarbon dates from charcoal layers. These dates were supplemented by luminescence dating of colluvial sand layers. The first forest fires occurred ~9000 years ago following the immigration of Pinus sylvestris about 1000 years after deglaciation. Evidence of forest fires and colluvial activity increased with the density of the pine forest, reaching a maximum during the Holocene Thermal Maximum between ~8000 and 4000 cal. a BP, declining thereafter to a minimum in the last ~500 years. This multimillennial‐scale pattern corresponds with forest fires being triggered by lightning strikes during the warmest summer weather of the Holocene, which also produced heavy rain and slope wash from convective storms. The 50 forest fires identified over the Holocene indicate a long cycle in fire frequency of 1 in ~200 years, which appears to reflect the average successional recovery time of the forest. Complex interactions amongst vegetation, fire and climate may account for little or no association between 23 centennial‐ to millennial‐scale clusters of forest fires/colluvial events and Holocene temperature or precipitation anomalies. Buried podzols indicate five phases of soil formation and hence low levels of landscape disturbance. The kettleholes and their colluvial deposits therefore provide a unique geo‐ecological archive that has led to new insights into the geo‐ecological interactions that affect environmental change in the sub‐arctic landscape.  相似文献   

2.
以云南阳宗海1020 cm长的湖泊沉积物岩芯为研究对象,由7个木屑和树叶残体样的AMS14C测年建立岩芯年代框架,以18~19 cm间隔获取52个样品作花粉/炭屑分析,重建了阳宗海流域过去13000年的植被、气候以及森林火灾历史。研究结果表明,过去13000年植被演替、气候变化和森林火灾可分为5个阶段:1)13200~11000 cal.a B.P.,植被以常绿、落叶阔叶混交林为主,气候温凉湿润,森林火灾多发,后期(12300~11000 cal.a B.P.)随着温度和湿度的降低,森林火灾发生愈加频繁;2)11000~8000 cal.a B.P.,松林扩张,阔叶林缩小,气候较上阶段温暖偏干,森林火灾发生次数明显降低;3)8000~5000 cal.a B.P.,松林和常绿阔叶林占优势,且出现暖热性的枫香林,流域内气温升至13000 cal.a B.P.以来的最高值,湿度进一步降低,但森林火灾发生频率低;4)5000~800 cal.a B.P.,松林扩张至最盛,常绿阔叶林收缩,落叶阔叶林成分增加,气温和湿度均明显下降,森林火灾发生频率有所增加;5)800 cal.a B.P.至今,松林和常绿阔叶林收缩,落叶阔叶成分增加,草本植物中禾本科迅速上升,可能与人类活动有关,森林火灾发生频率低。阳宗海花粉/炭屑记录重建的植被、气候和森林火灾史表明,在滇中地区,落叶阔叶成分易引起森林火灾,冷气候导致多发的森林火灾,冷干气候是宜森林火灾发生的气候条件。  相似文献   

3.
为了解森林退化的原因,利用2000-2015年的MODIS NDVI数据,在分析贵州省植被变化趋势的基础上识别了归一化植被指数(NDVI)显著下降的区域,并在NDVI显著下降区选取面积大于10 km2的森林图斑为兴趣区,分析其内气候变化趋势及对森林NDVI值的影响。研究表明:197个兴趣区主要分布在贵州省西北部的赤水—习水、东北部的梵净山和东南部的非喀斯特区域;区内春、夏季NDVI变化趋势与年NDVI值变化趋势一致,下降速率达到-0.01·yr-1,冬季与其他季节变化趋势相反,呈不显著升高趋势;区内春季和夏季气温升高显著,降水和日照时间无明显变化,整体气候变化呈暖干趋势;夏季温度升高是NDVI降低的主要驱动因素。   相似文献   

4.
The spatial–temporal patterns of cloud-to-ground (CG) lightning covering the period 2010–2015 over the northwest Iberian Peninsula were investigated. The analysis conducted employed three main methods: the circulation weather types developed by Jenkinson and Collison, the fit of a generalized additive model (GAM) for geographic variables, and the use of a concentration index for the ratio of lightning strikes and thunderstorm days. The main activity in the summer months can be attributed to situations with eastern or anticyclonic flow due to convection by insolation. In winter, lightning proves to have a frontal origin and is mainly associated with western or cyclonic flow situations which occur with advections of air masses of maritime origin. The largest number of CG discharges occurs under eastern flow and their hybrids with anticyclonic situations. Thunderstorms with greater CG lightning activity, highlighted by a higher concentration index, are located in areas with a higher density of lightning strikes, above all in mountainous areas away from the sea. The modeling of lightning density with geographic variables shows the positive influence of altitude and, particularly, distance to the sea, with nonlinear relationships due to the complex orography of the region. Likewise, areas with convex topography receive more lightning strikes than concave ones, a relation which has been demonstrated for the first time from a GAM.  相似文献   

5.
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotranspiration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ET0 is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ET0 have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ET0 and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ET0. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081–2091 and 2091–2099 in maximum temperature and 2091–2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ET0 in some decades. Two peaks of the increase are observed in ET0 in the April–May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management.  相似文献   

6.
Dong  Shaoyang  Jiang  Yusheng  Yu  Xiong 《Landslides》2021,18(7):2531-2545
Landslides - Increasing number of landslides occurred in the cold regions over the past decades due to rising temperature or forest fires associated with climate change. The instability of thawing...  相似文献   

7.
Fire in the virgin forests of the Boundary Waters Canoe Area,Minnesota   总被引:2,自引:0,他引:2  
Fire largely determined the composition and structure of the presettlement vegetation of the Boundary Waters Canoe Area as well as the vegetation mosaic on the landscape and the habitat patterns for wildlife. It also influenced nutrient cycles, and energy pathways, and helped maintain the diversity, productivity, and long-term stability of the ecosystem. Thus the whole ecosystem was fire-dependent.At least some overstory elements in virtually all forest stands still date from regeneration that followed one or more fires since 1595 A.D. The average interval between significant fire years was about 4 yr in presettlement times, but shortened to 2 yr from 1868 to 1910 during settlement. However, 83% of the area burned before the beginning of suppression programs resulted from just nine fire periods: 1894, 1875, 1863–1964, 1824, 1801, 1755–1959, 1727, 1692, 1681. The average interval between these major fire years was 26 yr. Most present virgin forests date from regeneration that followed fires in these years. Significant areas were also regenerated by fires in 1903, 1910, 1936, and 1971. Most major fire years occurred during prolonged summer droughts of subcontinental extent, such as those of 1864, 1910, and 1936. Many fires were man-caused, but lightning ignitions were also common. Lightning alone is probably a sufficient source of ignitions to guarantee that older stands burned before attaining climax. Dry matter accumulations, spruce budworm outbreaks, blowdowns, and other interactions related to time since fire increase the probability that old stands will burn. Vegetation patterns on the landscape were influenced by such natural firebreaks as lakes, streams, wetlands, and moist slopes. Red and white pine are most common on islands, and to the east, northeast, or southeast of such firebreaks. Jack pine, aspen-birch, and sprout hardwood forests are most common on large uplands distant from or west of such firebreaks.A Natural Fire Rotation of about 100 yr prevailed in presettlement times, but many red and white pine stands remained largely intact for 150–350 yr, and some jack pine and aspen-birch forests probably burned at intervals of 50 yr or less. There is paleoecological evidence that fire was an ecosystem factor before European man arrived, and even before early man migrated to North America. Probably few areas ever attained the postulated fir-spruce-cedar-birch climax in postglacial times. To understand the dynamics of fire-dependent ecosystems fire must be studied as an integral part of the system. The search for stable communities that might develop without fire is futile and avoids the real challenge of understanding nature on her own terms.To restore the natural ecosystem of the Canoe Area fire should soon be reintroduced through a program of prescribed fires and monitored lightning fires. Failing this, major unnatural, perhaps unpredictable, changes in the ecosystem will occur.  相似文献   

8.
Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.  相似文献   

9.
Lightning casualties and damages in China from 1997 to 2009   总被引:2,自引:0,他引:2  
Lightning-related fatalities, injuries and property damages reported in China from 1997 to 2009 are summarized by using the National Lightning Hazards Database. Therefore, characteristics of the incidents including 5,033 deaths, 4,670 injuries and 61,614 damage reports are analyzed. For the spatial distribution of lightning disasters in China, the eastern costal and southern areas have more frequent lightning disasters than the western areas. Lightning disasters mainly occur in summer months from July to September, while fewer damages occur in winter months from October to March, which correlate significantly with the temporal variability of lightning frequency in China. Lightning-related casualties and damages in China have increased for the period of 1997 to 2007 and then began to decrease since 2008. The national fatalities and injuries per million people per year are 0.31 and 0.28, respectively. Rural people account for 51 and 29% of all lightning fatalities and injuries, which makes residents in agricultural and rural area the major lightning victims. Characteristics of lightning disasters and correlative factors are also studied, including hazard-affected industries and locations. The results show that civil industry has the worst property loss and farmland is the largest category in lightning-caused casualty locations.  相似文献   

10.
Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.  相似文献   

11.
吴坤鹏  刘时银  郭万钦 《冰川冻土》2020,42(4):1115-1125
基于地形图和Landsat TM/OLI遥感影像等数据, 利用目视解译和波段比值法提取1980年、 2000年和2015年南迦巴瓦峰地区冰川空间分布数据, 分析研究区近35年冰川变化, 探讨冰川对气候变化的响应。结果表明: 1980 - 2015年, 南迦巴瓦峰地区冰川面积持续减小并呈加速退缩的趋势, 近35年共减少了(75.23±4.67) km2, 占1980年冰川总面积的(25.2±1.6)%, 年平均面积减小率为(0.73±0.05)%。研究区东南坡冰川面积变化速率大于西北坡, 在不同流域、 海拔及朝向上, 冰川变化差异较大。南迦巴瓦峰地区冰川表碛十分发育, 表碛覆盖冰川面积变化率小于裸露冰川, 表碛覆盖对冰川消融具有抑制作用。南迦巴瓦峰地区在气温显著升高的背景下, 虽然降水量有所增加, 但冰川对气温更加敏感, 因气温升高引起冰川消融所带来的物质损失超过降水增加对冰川的补给, 导致南迦巴瓦峰地区冰川普遍萎缩。  相似文献   

12.
气候变暖对甘肃干旱气象灾害的影响   总被引:12,自引:3,他引:9  
应用甘肃80个地面气象站1960-2005年的降水量和气温序列资料,分析了降水量和气温的变化趋势以及降水量和气温的变化对干旱气象灾害的影响.结果表明:甘肃全省年平均气温总体呈明显升高趋势,年降水量总体呈明显减少趋势;甘肃气候变化总体呈暖干趋势.其中,河西呈微弱的暖湿趋势,河东呈显著的暖干旱趋势.3~10月全省年平均降水量与干旱受灾面积和粮食减产量呈显著负相关,全省平均气温与干旱受灾面积和粮食减产量均呈显著正相关.气候暖干化趋势对农业产生的负面影响,是导致干旱受灾面积扩大、粮食减产量增加的主要原因,同时也影响粮食安全.  相似文献   

13.
The relative importance of climate, forest fires and human population size on long‐term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. We employ pollen data from lakes, reflecting regional vegetation, and small forest hollows, reflecting local vegetation, from Russia, Finland and Sweden to reconstruct the long‐term forest composition. As potential drivers of the Holocene forest dynamics we consider climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings. We apply the statistical method of variation partitioning to assess the relative importance of these environmental variables on long‐term boreal forest composition. The results show that climate is the main driver of the changes in Holocene boreal forest composition at the regional scale. However, at the local scale the role of climate is relatively small. In general, the importance of forest fires is low both at regional and local scales. The fact that both climate and forest fires explain relatively small proportions of variation in long‐term boreal vegetation in small forest hollow records demonstrates the complexity of factors affecting stand‐scale forest dynamics. The relative importance of human population size was low in both the prehistorical and the historical time periods. However, this is the first time that this type of data has been used to statistically assess the importance of human population size on boreal vegetation and the spatial representativeness of the data may cause bias to the analysis.  相似文献   

14.
干旱气候因子与森林火灾   总被引:5,自引:0,他引:5  
徐明超  马文婷 《冰川冻土》2012,34(3):603-608
森林火灾作为一种自然灾害, 气候变化直接或间接影响森林燃烧的火环境, 进而对火发生和火行为产生影响. 干旱气候条件与森林火灾的发生有密切的关系, 气象条件通过气温、 日照、 蒸发量、 风力、 空气湿度等影响着森林火灾的发生和发展. 一般情况下, 气温高、 降水少、 湿度小、 风力大易发生森林火灾. 在山区, 山谷风和地形影响森林火灾蔓延, 森林火灾的蔓延主要受山谷风所控制, 具有间歇性, 另外地形的变化在很大程度上制约着火势的蔓延. 所以, 要利用不同时段的气象条件、 山风出现的时间及有利地形, 及时组织灭火和控制火势蔓延. 森林火灾的发生有各种类型, 通过对森林火灾中一些特殊火行为及相关元素对火灾发展蔓延影响分析, 找出森林火灾扑救与逃生的方法及注意事项.  相似文献   

15.
青海省天峻县木里煤田聚乎更矿区构造轮廓和地层格架   总被引:5,自引:0,他引:5  
木里煤田聚乎更矿区是全球陆上中纬度、高海拔冻土带天然气水合物的发现地,也是当前青藏高原地质研究的热点地区之一.依据近年来的煤炭地质勘查资料,对聚乎更矿区的构造轮廓、含煤地层、沉积相和聚煤作用进行深入分析,认为聚乎更矿区位于祁连坳褶带西段,受大通山北缘和托莱山南缘对冲断裂组的制约,构造线总体方向为北西-南东向,构造轮廓表...  相似文献   

16.
1980-2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测   总被引:9,自引:7,他引:2  
基于地形图、航空摄影相片和Landsat OLI遥感影像,对青藏高原东南部岗日嘎布山1980-2015年间的冰川变化进行了研究。结果表明: 1980-2015年,岗日嘎布山冰川面积减少679.50 km2(-24.91%),年平均面积退缩率为0.71%·a-1,末端海拔平均抬升了111 m。研究区范围内有10条冰川处于前进状态,冰川长度平均增加566.17 m;其余冰川均处于退缩状态,冰川长度平均减少823.49 m。与中国其他山系冰川相比,岗日嘎布山冰川面积年平均退缩速率较大,冰川长度变化速率最大,是冰川退缩最强烈的地区之一。岗日嘎布山冰川变化与气候变化关系密切,对研究区附近三个气象站5-9月平均气温和降水变化分析表明,自1980年以来,岗日嘎布山5-9月平均气温显著上升,降水变化不明显,是导致该区域冰川呈现快速退缩的主要原因。  相似文献   

17.
1993-2015年喀喇昆仑山努布拉流域冰川变化遥感监测   总被引:2,自引:2,他引:0  
刘凯  王宁练  白晓华 《冰川冻土》2017,39(4):710-719
利用Landsat TM/ETM+及OLI遥感影像,通过比值阈值法和目视解译法提取冰川边界,分析了1993-2015年喀喇昆仑山努布拉流域的冰川变化特征。结果表明:(1)冰川面积萎缩103.24 km2,占冰川总面积的4.64%,年均萎缩率为0.20%。与青藏高原其他地区相比,研究区冰川萎缩幅度较小。气温升高是冰川面积萎缩的主要因素。(2)规模≤ 0.1 km2的冰川面积萎缩幅度最大,规模较大的冰川萎缩幅度相对较小。(3)不同朝向的冰川均处于萎缩状态,北朝向冰川萎缩率最大,因为北朝向多为小规模冰川,而东朝向冰川的萎缩率最小。(4)有9条冰川末端发生前进现象。  相似文献   

18.
This paper focuses on revealing the status quo and variation of glaciers in the western region of Tanggula Mountains. The ratio threshold, NIR water identification and visual interpretation were used to extract the boundary of glaciers based on Landsat data (TM/ETM+/OLI) from 1990 to 2015. In particular, the NIR water identification is a new method to extract glaciers from water, which is suitable to improve the traditional method of ratio threshold. This study used spatial interpolation method to evaluate temperature and precipitation changes. The kriging interpolation method was adapted to manipulate and to extract the appropriate data based on ten weather stations. Comparing to the variations and characteristics of glaciers and climate change from 1990 to 2015, we concluded that glacial retreat in the western region of Tanggula Mountains was serious. The glacier area reduced from 1 693.65 km2 to 1 490.81 km2, respectively, in 1990 and 2015, in general, approximately 202.84 km2 (11.98%) of glacier area has been retreated in the last 25 years. Moreover, the rate of glacier decline after 2000 was much faster than the last decade of the 20th century. In addition, the decreased area of glaciers in the lower altitude basins below 5 000 meters occupied 94.84% of the total change area while the glacier above 5 000 meters almost had no change. The kriging interpolation of the meteorological data indicated that the southeast of the study area was damp and hot while the northwest was cold and dry. The characteristic of temperature distribution from the northwest to the southeast presented from low to high, and precipitation increased in the first of the study period and then decreased but both of them were not very significant. In short, the temperature of study area was increased more prominently since 2000, while the precipitation change was very weak. The mean annual temperature and precipitation of 1980-1989a, 1990-1999a, and 2000-2013a were -3.53 ℃, -3.20 ℃, -2.22 ℃, and 384.49 mm, 354.27 mm, 428.13 mm, respectively. The study found that the glacier change was consistent with temperature variation in spite of the adverse effects of increased precipitation. Therefore, the research concluded that the precipitation change was not more significant comparing to temperature change. In other words, the main reason of the rapid decrease of glaciers in study area was likely due to the rise of temperature.  相似文献   

19.
S. Novo  G.B. Raga 《Atmósfera》2013,26(4):461-472
Radar data from Cerro Catedral (a peak close to Mexico City) were used to investigate the properties of convective storms over central Mexico, a region with complex orography. The spatial distribution shows a preference for storms to form and move to the west of radar, over a narrow band of high terrain. However, the storms with the higher volumes and echo-top heights tend to be located southwestward over lower terrain. Each radar feature was matched with the number of cloud-to-ground (CG) lightning produced inside it, as retrieved from the World Wide Lightning Location Network dataset. The storms in which lightning was detected, with an average of more than six lightning bolts, clearly outperform in size and intensity the group of storms in which lightning was not detected, and tend to lie over lower terrain. The sample of over 98 000 identified cells was divided into four elevation groups to look for elevation trends in the mean properties, as reported for other Mexican regions. While the number of storms per unit area increases with terrain height, the average values for properties related to both size (area, volume, echo-top height) and intensity (maximum reflectivity, number of CG bolts, height of maximum reflectivity, maximum height of 30 dBZ echo) decrease. These results could be related to the possible shallower warm-cloud depths over the higher elevations. The diurnal cycles of convection and lightning north of the radar show a nearly typical continental regime of precipitation in that zone, with maxima at 18:00 LT in both variables. However, south of the radar, a maximum in lightning activity occurs during late night and early morning, which is linked with the deeper nocturnal convection over the lower terrain in that zone.  相似文献   

20.
利用Landsat卫星影像,采用面向对象分类方法提取珠穆朗玛峰自然保护区湖泊信息,分析了湖泊动态及对区域气候变化的响应关系。结果表明:(1)2015年保护区湖泊总面积为489.07 km2,构造湖、河成湖、冰川湖分别占总面积的77.3%、2.6%、20.1%。(2)1975-2015年,保护区内各类湖泊面积变化速率不同,冰川湖最大(1.05 km2·a-1),构造湖次之(-0.85 km2·a-1),河成湖最稳定(0.013 km2·a-1);保护区南坡冰川湖面积变化速率(0.53 km2·a-1)略大于北坡(0.52 km2·a-1)。(3)北坡构造湖、河成湖对区域气候的响应呈阶段性变化规律,1975-2000年珠峰地区气候呈暖湿化趋势,2000年构造湖、河成湖面积达到峰值,两类总计增加22.8 km2;2000-2015年转变为显著的暖干气候,构造湖、河成湖面积均呈减少趋势,总共减少57.16 km2。随着区域气候的变暖,冰川湖总面积不断扩大,近40年间冰川湖面积累计增加43.06 km2。(4)灰色关联度分析显示,年极端低温对构造湖面积变化影响最显著,年均气温对冰川湖起主导作用,年均相对湿度对河成湖影响最大。较其他气候因子而言,降水量对各类湖泊面积变化的影响均最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号