首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Icarus》1987,72(1):69-78
Observations of the Uranian rings were made in several color filters by the Voyager Imaging Science experiment in January 1986 for the purpose of determining the color of the rings. Selected images were taken through the Violet (λ = 0.41 μm), Clear (λ = 0.48 μm), and Green (λ = 0.55 μm) filters of the Voyager 2 narrow angle camera. The results of the analysis are consistent with the α, β, η, γ, δ, and ϵ rings being very dark, with flat spectra throughout the visible, and are comparable to the latest Voyager results showing a lack of color for the Uranian satellites. The general lack of color in the ring/satellite system of Uranus is remarkably different than the case of the distinctly reddish systems of Jupiter and Saturn. The unique combination of low absolute reflectivity and flat spectrum which characterizes the Uranian rings supports the concept that the Uranian ring material is compositionally distinct from either the Si- and S-rich Jovian ring and inner satellites, or the water-ice-rich rings and inner satellites of Saturn. Of all cosmically abundant materials, the candidate which best matches the low brightness and flat spectrum of the Uranian rings is carbon.  相似文献   

2.
A common pattern is found to exist both in the planetary system and in the satellite systems of Jupiter and Uranus. A quantitative model of this pattern is obtained from the observed parameters of the Jovian and Uranian systems. Calculated values of the Earth-asteroid mass ratio and spatial separation are consistent with observed values. Application of the model to the Saturnian satellite system suggests the presence of an “asteroid belt” with a mass of ≅8 × 1022 gm orbiting Saturn at a mean distance of 7.9 × 1010 cm. If the pattern is a general one, it seems unlikely that it arises from a post-formation process. Possible implications of these features for hypotheses on the origin of the solar system are discussed.  相似文献   

3.
The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.  相似文献   

4.
The comparison of masses and sizes of the Neptunian satellites and of Pluto and Charon to the secondaries of the planetary, Jovian, Saturnian and Uranian systems support the hypotheses, first, that an initial Neptune's satellite system may have been disrupted, second, that Triton may have been the system perturber and, third, that Pluto (or a parent body of Pluto and Charon) was initially a giant satellite of Neptune. Based on recent theoretical works on perturbed proto-planetary nebula and noting the similarity of some characteristics of Neptune and Uranus, a theoretical mean distance ratio of primeval gaseous rings around Neptune is tentatively deduced to be about 1.475, close to the value of the Uranian system. An exponential distance relation gives possible ranges of distances at which small satellites and/or ring structures could be found by Voyager 2, close to Neptune.  相似文献   

5.
Recently the motion of the main satellites of Jupiter, Saturn and Uranus have been modelled in order to get accurate ephemerides. These models have been fitted over a large amount of observations. Among these ones, the positions issued from the observations of mutual events are the most accurate. We can then expect to obtain a new kind of dynamical informations directly linked to planetological questions. We have to determine what information is used in these observations to get the still unknown dynamical parameters. We look after these questions especially in the Jovian and Saturnian systems.  相似文献   

6.
E.M. Sieveka  R.E. Johnson 《Icarus》1982,51(3):528-548
The molecular transport of condensed gas species across the surfaces of the icy satellites of Jupiter and Saturn is examined with the view of describing, in part, certain gross visual features associated with these bodies. Molecular redistribution induced by thermal sublimation and magnetospheric plasma-ion impact on satellites with negligible atmospheres is calculated by assuming that the molecules follow ballistic trajectories and by statistically selecting initial molecular velocities and points of origin. Erosion/deposition profiles so calculated are compared for a variety of satellite sizes and environments in order to understand the relative importance of sublimation and cold corotating plasma-ion- and fast plasma-ion-induced transport. The results are scaled to make them useful as new data is available for the icy satellites and their plasma environment. The erosion/deposition profiles are then used to discuss the appearance of a polar frost on Ganymede. A balance of magnetospheric-ion implantation and ion-induced molecular redistribution is used to discuss the observation of embedded SO2 and the darkening of the trailing side on Europa. Ion-induced molecular transport may also limit the deposition of SO2 frost in the polar regions of Io and may be a source of heavy particles in the Jovian and Saturnian magnetospheres.  相似文献   

7.
The interaction of the Jovian energetic radiation belt electrons, and the Jovian plasma, with an ambient dust population is examined. Firstly the distribution of dust, ejected from Io, in the inner magnetosphere is calculated. Using the mass loss in submicron particles of ~13g/sec, which is required to model the intensity and shape of the Jovian ring in the model of Morfill etal. (1980b), it is possible to quantitatively calculate losses of magnetospheric ions and electrons due to direct collisions with charged dust particles as well as multiple Coulomb scattering with resultant losses in the Jovian atmosphere. It is shown that the magnitude and radial dependence of the losses are sufficient to explain the electron measurements, although the possibility that some other process may be more effective cannot be ruled out. The same dust population has, on the other hand, no significant effect on the plasma, which should therefore be transported essentially loss free, except within the Jovian ring, if there are no other processes involved. Comparison with the data shows that loss free transport outside the ring does indeed satisfy the measurement constraints.  相似文献   

8.
A ringlet of Saturn, Uranus, Neptune or Jupiter may be composed of particles held in contact by their mutual gravitation, without relative motion. Lacking tensile strength, each part of the ringlet orbits as if it were a separate particle, but all parts are constrained to the same orbit by their contacts. Slight shear strength prevents flow. This configuration is stable inside Roche's limit, and outside an inner limit within which it would scatter. These limits depend on the density of the ringlet. Conversely, for an observed radius in a ring, a range of possible density is calculated. For Saturn's ring system, the density of a ringlet at the inner edge of the C ring must be at least 2.0 g cm-3 and in the outer F ring not more than 0.73. For Uranus, the inner ring must be at least 2.3, and the outer between 1.0 and 2.3. Jupiter's ring must be in the range 1.4 to 3.9, and Neptune's, in the range 0.6 to 1.5. In extended crowded regions of a ring system, the gaps between ringlets must be at least 38% as wide as the ringlets, in the outer portions of the system, and wider than that at smaller radii. Certain observations can be explained by this model, including the sharp edges of the rings, a long life of the system, the possible existence of a partial ring, asymmetry of brightness of Saturn ring A, and forward scattering of radio waves.  相似文献   

9.
J.B. Blake  Michael Schulz 《Icarus》1980,44(2):367-372
The Jovian satellites and ring are continuously bombarded by high-energy galacic cosmic rays and magnetospheric ions. Nuclear interactions will create very energetic neutrons and pions. The decay of some of these unstable particles within the Jovian magnetosphere wil result in trapped protons and ultrarelativistic electrons and positrons. Although this source is weak compared to those that yield lower-energy magnetospheric particles, it is expected to generate the most energetic Jovian particles. These processes are briefly described.  相似文献   

10.
We study the viscosity of a differentially rotating particle disk in the limiting case where the particles are densely packed and their collective behavior resembles that of a liquid. The pressure tensor is derived from the equations of hydrodynamics and from a simple kinetic model of collisions described by Haff (1983). We find that density waves and narrow circular rings are unstable if the liquid approximation applies. The resulting development of nonlinear perturbations may give rise to “splashing” of the ring material in the vertical direction. These results may help in understanding the origin of the ellipticities of ringlets, the nonaxisymmetric features near the outer edge of the Saturnian B ring, and the unexplained residuals in kinematic models of the Saturnian and Uranian rings.  相似文献   

11.
Craters with central peaks occur on the Uranian satellites Ariel, Umbriel, Titania, and Oberon; but do not occur on Miranda. The inelastic surface of Miranda is apparently due to the heavy tectonic reworking of its surface. A theory of expansion/contraction is proposed to explain the tectonic history of Miranda. The existence of central peak craters on the four largest satellites of Uranus implies that they have surface strengths similar to those of the Saturnian satellites and silicate bodies of the inner solar system which all have central peak craters. The absence of central peak craters on Miranda implies that it has an inelastic surface similar to those of the Jovian ice satellites Ganymede and Callisto whose surfaces do not contain central peak craters.  相似文献   

12.
Experimental results on the interaction between fast bombarding ions and solid targets simulating satellite surfaces in the Outer Solar System are reviewed. Applications to Jovian, Saturnian, Uranian, Neptunian, and Plutonian systems suggest the important role played by cosmic and magnetospheric ions in eroding material, in redistributing it on the surfaces of some objects, and in producing either thin or thick mantles of dark organics.  相似文献   

13.
It is shown by linear stability analysis that a preplanetary (presatellite) disk of dust and gas with Keplerian velocity field can become unstable due to the collective self-gravity of the disk. The radial distribution of rings, which may result from this instability, is derived. These rings later on can be the formation sites for planets around the Sun and for satellites around the planets. The derived orbits are shown to be in good agreement with that of the planets and the satellites (of Jupiter, Saturn, and Uranus). Predictions and conclusions seem to be possible for the existence of three yet unknown Uranian satellites, the origin of the early Moon and the possible radial extension of the planetary system.  相似文献   

14.
We discuss the high energy electron absorption signatures at Titan during the Cassini dayside magnetospheric encounters. We use the electron measurements of the Low Energy Measurement System of the Magnetospheric Imaging Instrument. We also examine the mass loading boundary based on the ion data of the Ion Mass Spectrometer sensor of the Cassini Plasma Spectrometer. The dynamic motion of the Kronian magnetopause and the periodic charged particle flux and magnetic field variations – associated with the magnetodisk of Saturn – of the subcorotating magnetospheric plasma creates a unique and complex environment at Titan. Most of the analysed flybys (like T25–T33 and T35–T51) cluster at similar Saturn Local Time positions. However the instantaneous direction of the incoming magnetospheric particles may change significantly from flyby to flyby due to the very different magnetospheric field conditions which are found upstream of Titan within the sets of encounters.The energetic magnetospheric electrons gyrate along the magnetic field lines of Saturn, and at the same time bounce between the mirror points of the magnetosphere. This motion is combined with the drift of the magnetic field lines. When these flux tubes interact with the upper atmosphere of Titan, their content is depleted over approximately an electron bounce period. These depletion signatures are observed as sudden drop-outs of the electron fluxes. We examined the altitude distribution of these drop-outs and concluded that these mostly detected in the exo-ionosphere of Titan and sometimes within the ionosphere.However there is a relatively significant scatter in the orbit to orbit data, which can be attributed to the which can be attributed to the variability of the plasma environment and as a consequence, the induced magnetosphere of Titan. A weak trend between the incoming electron fluxes and the measured drop-out altitudes has also been observed.  相似文献   

15.
The recent observation of the absorption of radiation belts in the vicinity of Saturn's bright rings and historical observations of the ring system make the following related results apparent:
  • - The gaps in the rings are caused by the presence of at least 6 small, extremely dense and probably electrically charged ‘sweeper’ moons which effectively sweep the ring matter clean from the gaps. This is known due to the fading of the inner ring edges whereas the outer edges are well defined. Their orbital periods will differ from the expected Keplerian periods if the moons and Saturn do possess electric fields.
  • - Absorption of radiation belts near the rings (of Jupiter also) implies that the ring particles themselves are not absorbing the radiation but the small moons are. This is consistent with the observed radiation belt absorption near the outer Saturnian moons.
  • - If electric fields of the sweeper moons cause the ring edge fading as observed (and not simply gravitational), then Saturn itself must maintain an electric field in its vicinity by way of a sizeable proton wind to affect the uneven ring edge fading and will be surrounded by an H+ cloud at least to approximately the A-ring. this is consistent with the detection of an H+ cloud surrounding Saturn (Weiseret al., 1977, p. 755). The other possibility is that these moons are extremely dense and have very large internal magnetic fields.
  • - Because of their location, these moons must be captured and if very dense as believed, may be core remnants of a nova.
  •   相似文献   

    16.
    Differences in crater morphology between the Jovian and Saturnian-Uranian ice satellites implies a weaker surface strength for Ganymede and Callisto and thus a more concentrated composition of water. This compositional anomaly among the ice satellites is apparently due to a more complete migration of heavy material toward the inner part of the pre-planetary disc of the Jovian system than occurred in the discs of the Saturnian and Uranian systems.  相似文献   

    17.
    J.A. Fernández  W.-H. Ip 《Icarus》1984,58(1):109-120
    The final stage of the accretion of Uranus and Neptune is numerically investigated. The four Jovian planets are considered with Jupiter and Saturn assumed to have reached their present sizes, whereas Uranus and Neptune are taken with initial masses 0.2 of their present ones. Allowance is made for the orbital variation of the Jovian planets due to the exchange of angular momentum with interacting bodies (“planetesimals”). Two possible effects that may have contributed to the accretion of Uranus and Neptune are incorporated in our model: (1) an enlarged cross section for accretion of incoming planetesimals due to the presence of extended gaseous envelopes and/or circumplanetary swarms of bodies; and (2) intermediate protoplanets in mid-range orbits between the Jovian planets. Significant radial displacements are found for Uranus and Neptune during their accretion and scattering of planetesimals. The orbital angular momentum budgets of Neptune, Uranus, and Saturn turn out to be positive; i.e., they on average gain orbital angular momentum in their interactions with planetesimals and hence they are displaced outwardly. Instead, Jupiter as the main ejector of bodies loses orbital angular momentum so it moves sunward. The gravitational stirring of planetesimals caused by the introduction of intermediate protoplanets has the effect that additional solid matter is injected into the accretion zones of Uranus and Neptune. For moderate enlargements of the radius of the accretion cross section (2–4 times), the accretion time scale of Uranus and Neptune are found to be a few 108 years and the initial amount of solid material required to form them of a few times their present masses. Given the crucial role played by the size of the accretion cross section, questions as to when Uranus and Neptune acquired their gaseous envelopes, when the envelopes collapsed onto the solid cores, and how massive they were are essential in defining the efficiency and time scale of accretion of the two outer Jovian planets.  相似文献   

    18.
    The dynamical evolution of fine dust particles ejected from Enceladus and subsequently electrically charged within the Saturnian magnetosphere is studied. It is shown that the gyro-phase drift, which is radially outwards due to the strong radial temperature and density gradients in the magnetospheric plasma, is, by far, the fastest transport mechanism of these grains. Maintenance of the E-ring in a steady state throughout the age of the solar system would need a mass loss from Enceladus of about 2 parts in 1000.  相似文献   

    19.
    This paper analyzes the formation, kinetics, and transport of hot oxygen atoms in the atmosphere of the Jovian satellite Europa. Atmospheric sources of suprathermal oxygen atoms are assumed to be represented by the processes of dissociation of molecular oxygen, which is the main component of the atmosphere, by solar UV radiation and electron fluxes from the inner magnetosphere of Jupiter, as well as by the reaction of dissociative recombination of the main ionospheric ion O 2 + which thermal electrons. It is shown that dissociation in Europa’s near-surface atmosphere is balanced by the processes of the loss of atomic oxygen due to the effective escape of suprathermal oxygen atoms into the inner magnetosphere of Jupiter along the orbit of Europa and due to ionization by magnetospheric electrons and catalytic recombination of oxygen atoms on the icy surface of the satellite. It thus follows that atomic oxygen is only a small admixture to the main atmospheric component—molecular oxygen—in the near-surface part of the atmosphere. However, the outer exospheric layers of Europa’s atmosphere are populated mostly by suprathermal oxygen atoms. The near-surface molecular envelope of Europa is therefore surrounded by a tenuous extended corona of hot atomic oxygen.  相似文献   

    20.
    G.L. Siscoe 《Icarus》1975,24(3):311-324
    In 1985 the spin axis of Uranus points within 10° of the Sun and the planet's position is very near the solar apex direction. A Uranus mission with an encounter near 1985 might expect to measure the unusual particle and field configuration of a “pole-on” magnetosphere and also properties of the interstellar medium. We give here estimates of the particle and field environment of Uranus based on extrapolation of solar wind data from 1 AU and on scaling relations for an Earth-type magnetosphere. Since the magnetic moment of Uranus is unknown, all magnetospheric parameters are derived as a function of the dipole strength. The onset of special magnetospheric properties are identified as the dipole moment increases from small to large values. A fairly complete set of magnetospheric parameters is given for a specific dipole moment to illustrate the case of a large moment.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号