首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人类的生产生活产生的振动会以高频地震波的形式被地震台站所记录。2020年1月,新冠肺炎疫情爆发,为了应对此次疫情,各地政府分别启动应急响应,国内地震记录出现最长、最突出的人为地震降噪期。各地震台站背景噪声显著下降,在人口稠密及工业发达地区尤为明显。同时,静噪期为探测地下地震源的微弱信号提供了可能。静噪期内,佘山地震台2 Hz频点背景噪声功率谱密度值比平时降低10 dB,而大洋山地震台10 Hz频点背景噪声功率谱密度值较平时降低约5 dB;佘山地震台2—10 Hz以及大洋山地震台10 Hz以上频率的背景噪声受静噪期影响明显。结合地震台站所处位置分析,疫情期间佘山地震台附近人口流出较多,2—10 Hz频率的背景噪声变化明显;大洋山地震台背景噪声则受工厂、轮渡、高速汽车等影响较大,f ≥10 Hz的背景噪声变化显著,而频率在2—10 Hz则无明显变化,表明该台人口总数趋于平稳。地震噪声和人类活动之间的相关性表明,地震学研究可以提供实时人口动态估计。  相似文献   

2.
江苏省区域地表背景噪声特性的分析   总被引:5,自引:0,他引:5  
利用welch方法,计算了江苏省"十五"数字地震台站地表背景噪声在0.01~20 Hz频带范围内的功率谱值,结果显示在周期10~16 8、4~8 s处分别存在两个明显的峰值.对比白天和夜晚时段台站三分向地表背景噪声的功率密度谱比值发现,地表台站三分向背景噪声在高频段(≥1 Hz)变化最为显著,在微震峰值频段(0.125~1 Hz)几乎所有台站之间的差异都不大,低频段(≤0.125 Hz)大部分台站垂直向白天时段的噪声水平比夜晚的值低,水平向则相反;但井下观测系统全频段内的比值变化都很小.此外,在2~16 Hz频率范围内,沿长江的苏南-上海地区的平均噪声水平高于苏中和苏北地区,比NLNM(低噪声模型)值高约45 dB左右;在0.125~1 Hz频率范围内,江苏中东部的噪声水平高于其他区域,推测这可能是与区域地质构造差异有关.  相似文献   

3.
应用PDF方法,计算了内蒙古现运行48个测震台站0.01~20 Hz频带范围内的功率谱密度(PSD)和1~20 Hz频带范围内噪声均方根(RMS)值,定量分析了内蒙古区域背景噪声水平。结果显示:平均噪声水平属于Ⅰ类的台站有45个,Ⅱ类有3个;台站背景噪声在1 Hz以上频段内,主要受公路和人为影响;在0.6~1 Hz频段内背景噪声水平差异较小;在低频段,水平向受温度和湿度影响大于垂直向,山洞台受影响小于地面台。  相似文献   

4.
利用2020年5月1—7日乌加河地震台、乌力吉地震台波形数据,应用噪声功率谱概率密度(PDF)方法,计算2个台站的台基噪声,分析了2种观察环境下的台基噪声特征及影响因素。结果显示,在小于0.1 Hz频段乌力吉地震台台基噪声值明显大于乌加河地震台,说明地震计在小于0.1 Hz 频段受环境温度影响的特征较显著;在大于1 Hz频段2个台站台基噪声值均有台阶性升高频段,这是由在该频段台基噪声受人为活动影响所致。  相似文献   

5.
地震台站背景噪声是影响地震观测质量的主要因素之一,分析背景噪声随频率的分布对于地震观测具有重要意义。通过宁夏陶乐、灵武井下地震观测站地表背景噪声记录,对比分析二者原始地动波形差异及其频谱特征,计算观测站背景噪声功率谱密度PSD值及三分向1—20 Hz各倍频程带宽平均噪声RMS值,分析井下与地表背景噪声PSD值、RMS值差异及变化特征。结果表明,同一观测站,井下地震计平均噪声RMS值比地表小10倍左右;对比分析陶乐、灵武井下地震观测站地表平均噪声RMS值,二者相差不大,但对比井下平均噪声RMS值发现,灵武井下地震观测站平均噪声RMS值较大。  相似文献   

6.
小北湖火山台原址位于原始森林保护区,按照林区防火要求,2019年选址迁建。选取迁建前后小北湖火山台观测数据,通过计算不同频段范围内背景噪声记录的加速度功率谱密度,分析了迁建前后地震观测台站的噪声特征。结果表明,在1—20 Hz频段内,迁建后功率谱噪声值普遍降低10—20 dB;从RMS值来看,UD向降低22.0%,EW向降低58.2%,NS向降低62.8%,达到Ⅰ级台基水平,迁建后井下环境抗干扰能力更强,观测效果更好。  相似文献   

7.
选取2022年5月和7月乌加河地震台测震和重力观测数据,应用噪声功率谱概率密度(PDF)方法,对比分析疫情防控政策背景下该台背景噪声变化,探究人类活动对观测数据的影响。结果发现:(1)测震数据记录:与2022年5月相比,7月噪声RMS值明显减小,分析认为,该月受乌加河地区疫情防控措施影响,人类活动减弱,表明人类活动对测震观测数据具有显著影响;(2)重力观测数据:在2个观测时段,置于同一观测山洞的重力仪背景噪声记录几乎无差别,表明人类活动对重力观测数据的影响较小,重力仪基本不受台站背景噪声的影响,从而验证了测震数据的准确、可靠。综合分析认为,人类活动对乌加河地震台背景噪声有一定影响,但重力仪由于其特性,观测数据基本不受人类活动影响。  相似文献   

8.
上海地震台阵地动噪声功率谱分析   总被引:2,自引:2,他引:2  
介绍了功率谱分析的计算方法,并将功率谱应用于对上海地震台阵地动噪声记录的分析。结果表明,该台阵16个子台的地动噪声功率谱在高于1Hz的频域上均低于宽频带台站的平均值,说明各子台的背景噪声符合并优于地震观测对背景噪声的要求。而对于高频段的噪声则可通过台阵的独特的数据处理,很容易将其去除。  相似文献   

9.
利用中国地震局的“中国地震科学台阵——华北地区东部”(简称科学台阵3.2期)项目西拉木伦断裂带东沿地区26个流动台站连续观测数据,通过计算其加速度功率谱密度和相应的概率密度函数及1~20 Hz频段速度均方根值,研究西拉木伦断裂带东沿地区背景噪声特征。研究结果表明,高频段背景噪声时空分布差异性显著,噪声源主要来自人类活动;微震频段背景噪声主要来自海洋活动,其中高频微震频段背景噪声没有时空分布差异;低频微震频段背景噪声有一定的时空分布差异,白天差异性相比夜间更突出,这主要因温度变化和观测井微变形引起;低频段,白天三分向噪声水平大于夜间,且水平向噪声水平和动态范围大于垂直向,主要因白天环境温度变化和地倾斜影响大于夜间,且水平向对温度和地倾斜比垂直向更敏感导致。  相似文献   

10.
利用Welch算法,选取北京市测震台网28个测震台站地震连续波形中不同时段的无震记录,计算其台基噪声功率谱并进行背景噪声特征的统计分析,结果表明:北京市测震台网各台基噪声背景优势频率各有特征,高低频段噪声功率谱曲线差异大。在1~20Hz频段内,北京地区的背景噪声高值区出现在中心城区附近,低值区出现在北部的琉璃庙、密云和南部的上方山等台站,主要受人为噪声影响;在0.008~0.1Hz频段内,北京所有地区差异不大。  相似文献   

11.
天津地区台基背景噪声特征分析   总被引:1,自引:0,他引:1  
利用Welch算法,选取天津数字地震台网31个台站记录资料中不同时段的无震记录,对无震观测资料进行功率谱计算,然后进行统计分析,得出了天津地区的背景噪声特征:就季节而言,背景噪声值的高值出现在夏天和秋天,低值出现在春天和冬天;就时间而言,高值出现在白天的14时,低值出现在夜间的2时。对比噪声功率谱曲线发现,在0.125~1 Hz频段内有一个明显的峰值,这主要是受海洋的影响。在1~20 Hz频段内,天津地区的背景噪声值高值区出现在中心城区、静海、滨海新区,低值区出现在蓟县、宝坻、宁河、武清,且中心城区、静海、滨海新区白天时段的背景噪声值明显高于夜间时段,这主要是受人为噪声的影响,而在0.125~1 Hz频段内,天津所有地区差异不大。  相似文献   

12.
通过在陡河地震台架设地震计、强震计及烈度仪3类仪器进行同台址观测,对记录的背景噪声进行RMS值、功率谱的计算和傅里叶谱分析,总结3类仪器的记录波形特征,对比分析3类仪器的地震监测能力。研究结果显示:宽频带地震计可以对背景噪声在全频率域内进行有效完整的记录;强震计只能对大于0.1 Hz的天然噪声进行有效记录;而烈度仪的记录则完全是仪器自噪声,其无法有效记录地脉动。  相似文献   

13.
介绍了山东数字地震台网基本情况,计算了40个测震台站台基背景噪声,利用Welch方法计算噪声功率谱密度(PSD),进而计算地震台台基1—20 Hz地动噪声均方根值(RMS)和有效动态观测范围。根据计算结果,依照《地震台站观测环境技术要求》,对山东测震数字台网40个参评测震台站进行背景噪声级别分类,并分析不同台站背景噪声水平较低的原因,以期为测震台网的优化建设提供数据支持。  相似文献   

14.
选取2017—2021年巴里坤测震台数字观测资料,对近2 000 h波形数据,运用Welch平均周期法,计算得到该台台基背景噪声与噪声功率谱密度(PSD)及1—20 Hz地动噪声均方根值(RMS)。通过数据对比分析,认为2018—2020年,受G7、G575高速公路施工、人为干扰等影响,巴里坤测震台台基噪声水平不断升高,2019年噪声值达到最大。同时,对比巴里坤测震台在高速公路通行前后的背景噪声可知,2021年日、夜噪声差值高于2017年,且夏季高于冬季。  相似文献   

15.
利用西昌流动地震台阵2013年1月至4月观测的垂直分量的地震连续波形数据,计算了各台站评价环境噪声的功率谱密度概率密度函数,对地震台站环境背景噪声特征进行了分析。计算结果表明,西昌流动地震台阵多数台站环境的噪声水平较低,平均噪声水平在0.01~10 Hz频段低于全球新高噪声模型(NHNM)的参考值,不同台站在0.1~1 Hz频段的噪声水平基本相同,更接近于全球新低噪声模型(NLNM)的参考值。当地震计架设在基岩上并采用密封措施后,可以有效防风和保温,并且降低了气压变化对地震计的干扰。  相似文献   

16.
通过对海拉尔台阵数据应用Welch算法进行功率谱计算,研究背景噪声水平。功率谱分析结果表明,夜间和白天的背景噪声水平存在差异,在2.5Hz频段上白天与夜间平均值相差8d B,这与人们的作息时间有关,通过白天与夜间的连续性观察对比发现功率谱曲线变化分别在0.02Hz、0.2Hz、1Hz、2.5Hz、6.5Hz频段上的变化存在明显的一致性。对于功率谱分析中发现的单频率脉冲经过核实证明为宝日希勒煤矿定期开采所导致。海拉尔台阵噪声谱均处于全球噪声的标准曲线之间,且明显偏向于低噪声一侧曲线,平均低于噪声曲线高值30d B,人为噪声基本不影响背景噪声水平的变化,观测点噪声水平低,台阵背景噪声符合并优于地震观测对背景噪声的要求,监测能力满足监测需求。  相似文献   

17.
作为"一带一路"地震台网项目的子项目,鹤岗地震台阵区域位置特殊,在地震监测中担负着重要使命。2019年,黑龙江省地震局采用Reftek-130B地震数据采集器和CMG-3T宽频带地震计,完成台阵前期勘选工作,连续波形记录时间30天以上,波形记录质量良好。利用该台阵已勘选的15个点位连续波形记录,估计各点位功率谱,通过绘制概率密度函数图和单频曲线,初步分析该地区背景噪声变化特征。分析结果表明,各勘选点位的噪声功率谱密度相对稳定,部分点位受人类活动影响,在10 Hz以上存在突变,3-5、3-6、4-4子台高频变化较为明显,勘选点位的背景噪声变化特征可为今后的地震台阵建设提供依据。  相似文献   

18.
基于北京市测震台网连续三分量地震计波形数据,计算28个测震台站台基噪声,利用Welch方法计算噪声功率谱密度(PSD),进而计算地震台台基1-20 Hz地动噪声均方根值(RMS)和观测动态范围。结果表明,依照《地震台站观测环境技术要求》,北京市测震台网中有11个Ⅰ类台、9个Ⅱ类台、6个Ⅲ类台、2个Ⅳ类台。通过分析北京市测震台网数字地震台背景噪声水平,为测震台网的规划建设提供数据支持。  相似文献   

19.
选取2019年1月至2022年12月乌鲁木齐及周边地区14个测震台站垂直分量波形记录,通过计算PSD(功率谱密度)和PDF(概率密度函数),统计不同频段功率谱密度分布情况,对比乌鲁木齐及周边地区疫情前后背景噪声变化特征,并结合大数据探讨人口迁徙与背景噪声变化的相关性。同时计算了疫情前后研究区最小完备震级(Mc),对比分析其地震监测能力变化特征。结果表明:研究区地震背景噪声水平受疫情影响出现不同程度的下降,高频段(1~35 Hz)最大下降幅度为36.6 dB,部分台站长周期频段下降突出,这是人类活动间接影响的;上述变化与人口迁徙大数据变化呈现了极大的正相关。此外在疫情封闭期间,地震监测能力并没有明显的提高,但部分台站获得更为清晰的震相记录。  相似文献   

20.
乌鲁木齐区域数字遥测台网各子台背景噪声分析   总被引:6,自引:3,他引:6  
刘永廷  夏爱国  赵庆 《内陆地震》2002,16(4):366-371
选取乌鲁木齐区域数字遥测台网中 1 1个子台的背景噪声数字记录 ,计算并分析其背景噪声地动速度均方根值 RMS、有效测量动态范围以及噪声功率谱 ,最后确定出各台址背景噪声相对集中的频段  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号